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We consider the situation that Alice sends Bob single photons, each of which randomly takes
one of the two nonorthogonal polarization states |0〉 and |1〉, through the depolarizing channel
with losses. Our problem is to determine the maximum information on correctly transmitted
bits that can be extracted by Eve who stands between Alice and Bob, and simulates this
channel. We first briefly report the optimization of Eve’s information gain on correctly
transmitted bits, and then report counter-intuitive behavior of Eve’s information gain, that
is, when the angle between Alice’s two states is small, Eve’s information gain decreases as the
noises due to the back-action of her attempt to extract information get larger. We give an
information-theoretical explanation that justifies this behavior from another point of view.
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We consider the following problem. Let |0〉 and
|1〉 be two nonorthogonal single-photon polarization
states, Alice determines a bit value j = 0 or j = 1
randomly, and sends the state |j〉 to Bob through
the depolarizing channel with losses, i.e., Bob receives
the mixed state ρj of the partially depolarized single-
photon state and the vacuum. Eve replaces this chan-
nel by an ideal one and tries to extract information
on Alice’s and Bob’s data while leaving the state ρj

to Bob so that she hides her presence. In this case,
how much information on the bits where Alice and
Bob share the identical bit value (in the following, we
call these bits as correct bits) can Eve extract?

This problem is important for the security proof of
the practical quantum key distribution (QKD). In this
scheme, if the maximum amount of information that
can be extracted by Eve is estimated, we can perform
a secure key distribution by virtue of the technique of
classical imformation theory, such as privacy amplifi-
cation. In relation to QKD, our problem corresponds
to the estimation of the security against individual
attack in the B92 protocol [2] based on photon polar-
ization.

The outline of our study is as follows. We first
obtain Eve’s optimum information gain for correct
bits by Lagrange’s method of undetermined multipli-
ers. Since the noises introduced by Eve are the back-
action of her attempt to extract information, it might
be expected that information gain increases as these
noises increase. However, we find the counter-intuitive
phenomenon that Eve’s information gain decreases as
these noises get larger when the angle between two
states |0〉 and |1〉 is small. To clarify the mechanism
behind this phenomenon, we give an explanation from
the viewpoint of the information theory.

Since the state of the polarization of a single-photon
and that of spin- 1

2 particle have one to one correspon-
dense, we use the spin- 1

2
states to describe Alice’s state

|0〉 and |1〉 as

|0〉 ≡ cos
α

2
|z+〉 − sin

α

2
|z−〉 ,

|1〉 ≡ cos
α

2
|z+〉 + sin

α

2
|z−〉 ,

where | z+ 〉 and | z−〉 are the eigenstates of σz (z
component of Pauli matrix) whose eigenvalues are +1
and −1, respectively. α is the angle between |0〉 and
| z+ 〉 on the x-z plane in the Bloch sphere, and also
characterizes the nonorthogonality between the two
states, such that

〈0|1〉 = cosα .
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Figure 1: The states recieved by Bob and his mea-
surement bases in the Bloch sphere.

After the noisy channel, |j〉 turns into a mixed state
with the density matrix ρj which can be written by

ρj = T

[
(1 − ε) |j〉〈j| + ε

1
2

]
+ (1 − T )|vac〉〈vac| ,

(1)

where 1 is the identity operator which stands for ran-
dom quantum noises, |vac〉 is the vacuum state, and T
is the probability that Bob recieves the single-photon
states. These density matrices are shown in Fig. 1.

Eve replaces the noisy channel by an ideal one, pre-
pares auxiliary system, interacts this system with Al-
ice’s particle, and sends Bob the density matrix ρj

while she performs the optimum measurements on her
system to extract information.

Next, we describe Bob’s measurement. Bob mea-
sures the polarization on the basis {|0〉, |0〉} or
{|1〉, |1〉}, which is selected randomly. Here |0〉 and
|1〉 are defined as

|0〉 ≡ sin
α

2
|z+〉 + cos

α

2
|z−〉,

|1〉 ≡ sin
α

2
|z+〉 − cos

α

2
|z−〉 .

The whole measurement process is described by the
following POVM [5]

Fi ≡ 1
2
|i〉〈i| , FV ≡ 1 −

∑
i=0,1,0,1

Fi ,

where i = 0, 1, 0, 1, and “V” means the vacuum states.
Fi and Fi (i = 0, 1) are shown in Fig. 1 schemati-
cally using Bloch sphere. We call the events conclu-
sive where Bob’s outcome of POVM is 0 or 1. In the



events where Alice sends j(= 0, 1) and Bob receives
j, Alice and Bob obtain identical bit values, which we
call the correct bits.

Using Schmidt decomposition, Eq. (1) leads to the
expressions of the total pure states

U | 0〉 |w〉E =
√

T
(
1 − ε

2

)
|0〉 |a1〉E

+
√

T
ε

2
|0〉 | a2 〉E +

√
1 − T | vac〉 | av〉E ,

and

U | 1〉 |w〉E =
√

T
(
1 − ε

2

)
|1〉 | b1 〉E

+
√

T
ε

2
| 1〉 | b2 〉E +

√
1 − T | vac〉 | bv〉E

where | ai〉E and | bi〉E(i = 1, 2) are orthogonal to the
space spanned by | av〉E and | bv〉E, since Eve knows
the photon number she has sent. |ai〉E and |bi〉E(i =
1, 2) satisfy

E〈ai| aj〉E = δi,j, E〈bi| bj 〉E = δi,j , | bi〉E = ξ̂| ai〉E,

where ξ̂ is the unitary operator that relates them.
For the correct bits, the state of Eve’s probe when

the bit value is 0 is a pure state C0〈1 |U | 0 〉 |w 〉E ≡
| φ0〉E, and the state when the bit value is 1 is
C1〈0 |U | 1 〉 |w 〉E ≡ | φ1〉E, where C0 and C1 are con-
stants for normalization. The optimum measurement
which maximizes the information extracted from two
pure states has already been known [3, 6], and this
measurement yields the information gain with respect
to Shannon entropy as

IGc
S ≡ 1 − [−pe log2 pe − (1 − pe) log2(1 − pe)] ,

where pe is given by

pe =
1 − √

1 − |Q|2
2

, (Q ≡ E〈φ0 | φ1 〉E) .

To obtain the maximum information gain, we have to
optimize U such that |Q| takes the minimum value.
We have solved this problem by Lagrange’s method of
undetermined multipliers, and we plot this optimum
information gain as a function of ε as in Fig. 2 in the
cases of α = 45◦, T = 0.8 and α = 10◦, T = 0.3.
Since the parameter ε corresponds to the noises due
to the back-action of her attempt to extract informa-
tion, it might be expected that Eve’s information gain
increases when ε gets larger. But, the behavior of the
information gain in the right figure of Fig. 2 is counter-
intuitive, namely, there exist regions where increase of
noises reduces Eve’s information gain.

In order to explain this counter-intuitive phenom-
ena, we consider the mutual information between Eve
and the joint system of Alice and Bob for the conclu-
sive bits, i.e., I(E; A, B|conc). Using the simple rela-
tionship between the entropy and the mutual informa-
tion, this is upper bounded as follows.

I(E; A, B|conc) ≤ I(A; B, E|conc) + I(B; E|conc) .

Because of the nonorthogonality of Alice’s states and
that of Bob’s POVM elements, both I(A; B, E|conc)
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Figure 2: Eve’s maximum information gain IGS vs ε
when α = 45◦, T = 0.8 (left) and α = 10◦, T = 0.3
(right). The dashed line is the information bound
based on Eq. (2).

and I(B; E|conc) have an upper bound and so
I(E; A, B|conc) does. Quantitatively, this upper
bound (≡ ν)can be written as

1 − h
(

1−√
1−cos2 α
2

)
Pconc


 +

[
1

−h


1

2
− sin α

4(Pconc/T )

√
1 −

(
2(Pconc/T ) − 1

cosα

)2

]

where h(x) is the entropy function and Pconc is the
probability that Bob obtains conclusive results.

The optimum total Shannon information gain for
correct bits is nPconc(1 − e)IGS where n is the num-
ber of pulses that Alice sends to Bob and e is the bit
error rate, which is determined by ε and α. The to-
tal Shannon information gain nPconc(1 − e)IGS is no
greater than the total Shannon information gain for
conclusive bits nPconcν so that

IGS ≤ ν

1 − e
≡ Iupper

S . (2)

In Fig. 2, we plot this information bound Iupper
S by the

dashed line. The dashed line decreases as ε gets larger.
Intuitively, this behavior can be explained as follows.
Note that ε represents the random noises and since
Alice’s two input states are almost identical for small
α, Bob’s recieved states are almost identical for large ε
so that the measurement outcomes of Bob are almost
independent of the states Alice has sent. Thus, this
situation is almost equivalent to that Alice and Bob
independently determine the bit value randomly. In
this case, all Eve can do is just guessing their bit value,
and then Eve’s information gain is very low.
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