Entangled graphs: Bipartite entanglement in multi-qubit systems
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I. INTRODUCTION

The entanglement is a key ingredient of quantum me-
chanics [1,2]. In the last decade it has been identified
as a key resource for quantum information processing.
In particular, quantum computation [3,4], quantum tele-
portation [5], quantum dense coding [6], certain types of
quantum key distributions [7] and quantum secret shar-
ing protocols [8], are based on the existence of entangled
states.

The nature of quantum entanglement between two
qubits is well understood now. In particular, the
necessary and sufficient condition for inseparability of
two-qubit systems has been derived by Peres [9] and
Horodecki et al. [10]. Reliable measures of bi-partite en-
tanglement have been introduced and well analyzed (see
for instance Refs. [11,12]). On the other hand it is a very
difficult task to generalize the analysis of entanglement
from two to multi-partite systems. The multi-partite en-
tanglement is a complex phenomenon. One of the reasons
is that quantum entanglement cannot be shared freely
among many particles. For instance, having four qubits,
we are able to prepare a state with two e-bits (two Bell
pairs, as an example), but not more. This means that the
structure of quantum mechanics imposes strict bounds on
bi-partite entanglement in multi-partite systems. This
issue has been first addressed by Wootters et al. [13,14]
who have derived important bounds on shared bi-partite
entanglement in multi-qubit systems. In fact, one can
solve a variational problem to answer a question: What is
a pure multi-partite state with specific constraints on bi-
partite entanglement? O’Connors and Wootters [14] have
studied what is the state of a multi-qubit ring with max-
imal possible entanglement between neighboring qubits.
Another version of the same problem has been analyzed
by Koashi et al. [15] who have derived an explicit ex-
pression for the multi-qubit completely symmetric state
(entangled web) in which all possible pairs of qubits are
maximally entangled.

Following these ideas we analyze in the present paper a
new object, the so-called entangled graph. In the graph,
each qubit is represented as a vertex and an edge be-
tween two vertices denotes entanglement between these
two particles (specifically, the corresponding two-qubit
density operator is inseparable). The central issue of the
paper is to show that any entangled graph with N ver-
tices and k edges can be associated with a pure multi-
qubit state. We prove this result constructively, by show-
ing the explicit expression of corresponding pure states.
We show that any entangled graph of N qubits can be

represented by a pure state from a subspace of the whole
2N_dimensional Hilbert space of N qubits. The dimen-
sion of this subspace is at most quadratic in number of
qubits.

In some sense entangled graphs are objects similar to
those studied recently by Diir [16]. He investigated, how
to prepare multi-qubit states with specific pairs of qubits
being entangled. However, Diir did not take into account
the condition of separability between the rest of pairs of
qubits in the system. Certainly, our approach is much
more complex, with many more constraints since in the
entangled graph we have to fulfill all conditions for insep-
arability as well as separability between specific qubits.

II. ENTANGLED GRAPHS

Let us consider entangled graphs associated with pure
N-qubit states. These graphs consist of N vertices. Let
the parameter k£ denote the number of edges in the graph,
with the condition
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Then let us define a set S with k¥ members. These will be
pairs of qubits between which we expect entanglement;
thus for every i < j

0<k< (2.1)
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In what follows we propose a general algorithm how
to construct a pure state for an arbitrary graph. Let us
consider a pure state of N (N > 4) qubits described by
the vector
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with the normalization condition |a|® + |8]* + |y = 1.

One can check that there are many states which ful-
fill the conditions for concurrences. In particular, let us
assume the state (2.3) with
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This state indeed corresponds to the desired graph. This
proves that one can associate with an arbitrary entangled
graph a pure state. Moreover, by construction we have
proved that in general this state is a superposition of at

most N? vectors from the 2"V-dimensional Hilbert space
of N qubits.

(2.2)
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III. CONCLUSION

We have proposed a method for characterization of
two-particle entanglement in multi-qubit systems: We
have introduced a new concept of entangled graphs: ev-
ery qubit is represented by a vertex while entanglement
between two qubits is represented as an edge between
relevant vertices. We have shown that for every possible
graph with non-weighted edges there exists a pure state,
which represents the graph. Moreover, such state can be
constructed as a superposition of small number of states
from a subspace of the Hilbert space. The dimension of
this subspace grows linearly with the number of entan-
gled pairs (thus, in the worst case, quadratically with the
number of particles).

Introducing weight to edges in the graphs would allow
us to optimize entanglement for certain graphs. It could
even lead to entanglement engineering, when for every
pair we could specify the relative strength of entangle-
ment and find the optimal state with maximal concur-
rencies, as it was made for specific cases in Refs. [14,15].

States with defined bipartite entanglement proper-
ties are also of a possible practical use. In commu-
nications protocols, like quantum secret sharing [8] or
quantum oblivious transfer [17] one needs many-particle
states with specific bipartite entanglement properties.
The one-way quantum computer, suggested by Briegel
et al. [18] performs quantum computation only via pro-
jective measurement. For this purpose, one needs to
prepare a “substrate”, a complex cluster state of many
qubits. These states can also be associated with entan-
gled graphs. Therefore deep understanding of possible
entangled graphs can help us to understand structure of
quantum correlation and the corresponding bounds on
quantum communications and quantum information pro-
cessing.

ACKNOWLEDGMENTS

We thank Madrio Ziman and Jakub Macha for many
helpful discussions. This work was supported by the IST-
FET-QIPC project EQUIP under the contract IST-1999-
11053.

[1] E. Schrédinger, Naturwissenschaften 23, 807, (1935);
1bid. 23, 823 (1935); 1bid. 23, 844 (1935).

[2] A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. A
47, 777 (1935); J.S.Bell, Physics 1, 195 (1964); A. Peres,
Quantum Theory: Concepts and Methods (Kluwer, Dor-
drecht, 1993).

[3] J. Gruska, Quantum Computing (McGraw-Hill,1999);
J. Preskill, Quantum Theory Information and Compu-
tation (www.theory.caltech.edu/people/preskill).

[4] M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information (Cambridge University Press,
Cambridge, 2000).

[5] C. H. Bennett, et al., Phys. Rev. Lett. 70, 1895 (1993).

[6] C. H. Bennett and S. Wiesner, Phys. Rev. Lett. 69, 2881
(1992).

[7] A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).

[8] M. Hillery, V. Buzek, and A. Berthiaume Phys. Rev. A
59, 1829 (1999); R. Cleve, D. Gottesman, H. Lo, Phys.
Rev. Lett. 83, 1874 (1999).

[9] A. Peres, Phys. Rev. Lett. 77, 4524 (1996).

[10] M. Horodecki, P. Horodecki, and R. Horodecki, Phys.
Lett. A 223, 1 (1996).

[11] V. Vedral, M.B. Plenio, M.A. Rippin, and P.L.Knight,
Phys. Rev. Lett. 78, 2275 (1997).

[12] G. Alber, T. Beth, M. Horodecki, P. horodecki, R.
Horodecki, M Rotteler, H. Winfurter, R.F. Werner, A.
Zeilinger, Quantum information, Berlin (2001)

[13] V. Coffman, J. Kundu, W. K. Wootters, Phys. Rev. A
61, 052306 (2000)

[14] K.M. O’Connor and W.K. Wootters, Phys. Rev. A 63,
052302 (2001).

[15] M. Koashi, V. Buzek, N. Imoto, Phys. Rev. A 62, 050302
(2000)

[16] W. Diir, Phys. Rev. A 63, 020303(R) (2001)

[17] J. Mécha, arXiv quant-ph/0005115 (2000)

[18] R. Raussendorf, H. Briegel, Phys. Rev. Lett. 86, 5188
(2001)



