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Abstract

Quantum entanglement is the quantum information
processing resource. Thus it is of importance to un-
derstand how much of entanglement particular quan-
tum states have, and what kinds of laws entanglement
and also transformation between entanglement states
subject to. Therefore, it is essentialy important to use
proper measures of entanglement which have nice prop-
erties. One of the major candidates of such measures
is ”entanglement of formation”, and whether this mea-
surement is additive or not is an important open prob-
lem. We aim at certain states so-called ”antisymmetric
states” for which the additivity are not solved as far as
we know, and show the additivity for two of them.

Keywords: quantum entanglement, entanglement of
formation, additivity of entanglement measures, anti-
symmetric states.

1 Introduction

Concerning the additivity of entanglement of for-
mation, only a few results have been known. Vidal
et al. [1] showed that additivity holds for some mix-
ture of Bell states and other examples by reducing the
argument of additivity of the Holevo capacity of so-
called ”entanglement breaking quantum channels” [2]
and they are the non-trivial first examples. Matsumoto
et al. [3] showed that additivity of entanglement of
formation holds for a family of mixed states by utiliz-
ing the additivity of Holevo capacity for unital qubit
channels [4], depolarizing channels and entanglement-
breaking channels via Stinespring dilation [5].

In this poster it is shown that entanglement of for-
mation is additive for tensor product of two three-
dimensional bipartite antisymmetric states with a
sketch of the proof. We proved by combination of elab-
orate calculations.

2 New additivity result

2.1 Antisymmetric states

Let us start with an introduction of our notations
and concepts. H− will stand for an antisymmetric
Hilbert space, which is a subspace of a bipartite Hilbert
space HAB := HA ⊗HB, where both HA and HB are
3−dimensional Hilbert spaces, spanned by basic vec-
tors {|i〉}3

i=1. H− is three-dimensional Hilbert space,
spanned by states {|i, j〉}ij=23,31,12, where the state
|i, j〉 is defined as |i〉|j〉−|j〉|i〉√

2
. The space H− is called

antisymmetric because by swapping the position of two
qubits in any of its states |ψ〉 we get the state −|ψ〉. Let
H⊗n

− be the tensor product of n copies of H−. These
copies will be discriminated by the upper index as H(j)

− ,
for j = 1 . . . n. H(j)

− will then be an antisymmetric sub-
space of H(j)

A ⊗H(j)
B .

2.2 The result and proof sketch

It has been shown in [1] that Ef (ρ) = 1 for any
mixed state ρ ∈ S(H−). This result will play the key
role in our proof. We prove now that :

Theorem.

Ef (ρ1 ⊗ ρ2) = Ef (ρ1) +Ef(ρ2) (= 2) (1)

for any ρ1, ρ2 ∈ S(H−).

Proof. To prove this theorem, it is sufficient to show
that

Ef(ρ1 ⊗ ρ2) ≥ 2 (2)

since the subadditivity Ef (ρ1 ⊗ ρ2) ≤ Ef (ρ1) +



Ef (ρ2) = 2 is trivial. Indeed, it holds

Ef (ρ1 ⊗ ρ2) = inf
∑

piE(|ψi〉〈ψi|)
≤ inf

∑
p
(1)
i p

(2)
i E(|ψ(1)

i 〉〈ψ(1)
i | ⊗ |ψ(2)

i 〉〈ψ(2)
i |)

= inf
∑

p
(1)
i E(|ψ(1)

i 〉〈ψ(1)
i |)

+ inf
∑

p
(2)
i E(|ψ(2)

i 〉〈ψ(2)
i |)

= Ef (ρ1) +Ef (ρ2) (3)

where (p(j)
i , |ψ(j)

i 〉) are subject to the condition of ρj =∑
i p

(j)
i |ψ(j)

i 〉〈ψ(j)
i |. To prove (2), we first show that

E(|ψ〉〈ψ|) ≥ 2, for any pure state |ψ〉 ∈ H⊗2
− . (4)

Using the Schmidt decomposition, the state |ψ〉 can be
decomposed as follows:

|ψ〉 =
3∑
i=1

√
pi |ψ(1)

i 〉 ⊗ |ψ(2)
i 〉, (5)

where p1, p2, p3 > 0, p1 + p2 + p3 = 1, and {|ψ(j)
i 〉}3

i=1

is an orthonormal basis of the Hilbert space H(j)
− , for

j = 1, 2. Note that this Schmidt decomposition is with
respect to H(1)

− : H(2)
− , or, it could be said that with

respect to
(
H(1)
A ⊗H(1)

B

)
:
(
H(2)
A ⊗H(2)

B

)
, not with re-

spect to
(
H(1)
A ⊗H(2)

A

)
:
(
H(1)
B ⊗H(2)

B

)
, where “:” in-

dicates how to separate the system into two subsystems
for the decomposition.

First, we will use the following fact.

Lemma. If {|ψi〉}3
i=1 is an orthonormal basis of H−,

then there exists an unitary operator U , acting on
both HA and HB, such that U ⊗ U maps the states
|ψ1〉, |ψ2〉, |ψ3〉 into the states |2, 3〉, |3, 1〉, |1, 2〉, respec-
tively.

Therefore, by this Lemma, there exist unitary oper-
ators U (1), U (2) such that(

U (1) ⊗ U (1) ⊗ U (2) ⊗ U (2)
)|ψ〉

=
∑
i,j

ij=23,31,12

√
pij |i, j〉 ⊗ |i, j〉 =: |ψ′〉, (6)

where p23 := p1, p31 := p2, p12 := p3.

As is written in the following, we use the following
fact.

Lemma.

E(|ψ′〉〈ψ′|) ≥ 2, if

{
p23, p31, p12 ≥ 0
p23 + p31 + p12 = 1

.

(7)

(We proved this lemma by solving a cubic equa-
tion and bounding the Shannon entropy function with
polynomial functions.) Local unitary operators do not
change von Neumann reduced entropy, and therefore
E(|ψ〉〈ψ|) = E(|ψ′〉〈ψ′|) ≥ 2. That is, the claim (4) is
proven.

We are now almost done. Indeed, the entanglement
of formation is defined as

Ef (ρ) = inf
[(pi,ψi)]i∈∆(ρ)

∑
i

piE(|ψi〉〈ψi|) (8)

where

∆(ρ) =
{

[(pi, ψi)]i
∣∣∣ ∑

i pi = 1, pi > 0∀i∑
i pi|ψi〉〈ψi| = ρ, 〈ψi|ψi〉 = 1∀i

}
and it is known that all |ψi〉 induced from ∆(ρ) satisfy
|ψi〉 ∈ Range(ρ), where Range(ρ) is sometimes called
the image space of the matrix ρ, which is the set of
ρ|ψ〉 with |ψ〉 running over the domain of ρ. Hence

Ef (ρ) ≥ inf
{
E(|ψ〉〈ψ|) ∣∣ |ψ〉 ∈ Range(ρ), 〈ψ|ψ〉 = 1

}
.

(9)

Since ρ1⊗ρ2 ∈ S(H⊗2
− ), Range(ρ1⊗ρ2) ⊆ H⊗2

− , hence-
forth (2) is proven. Therefore (1) have been shown.

3 Conclusions and discussion

Additivity of the entanglement of formation for two
three-dimensional bipartite antisymmetric states has
been proven in this paper. The next goal could be
to prove additivity for more than two antisymmetric
states. Perhaps the proof can utilize the value of lower
bound of the reduced von Neumann entropy. Of course,
the main goal is to show that entanglement of forma-
tion is additive, in general. However, this seems to be
a very hard task.
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