# Manipulating quantum information of two trapped ions by a single-step operation 

L. F. Wei<br>Frontier Research System, The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama, 351-0198, Japan and Department of Physics, Shanghai Jiaotong University, Shangai 200030, P. R. China<br>Franco Nori*<br>Frontier Research System, The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama, 351-0198, Japan and Center of Theoretical Physics, Physics Department, Center for the Study of Complex System, University of Michigan, Ann Arbor, Michigan 48109-1120, USA ${ }^{\dagger}$


#### Abstract

Based on the exact conditional quantum dynamics for a two-ion system, here we propose an efficient single-step scheme for coherently manipulating quantum information of two trapped cold ions beyond the Lamb-Dicke limit by using a pair of synchronous laser pulses.

PACS number(s): $03.65 . \mathrm{Bz}, 32.80 . \mathrm{Pj}, 89.70+\mathrm{c}$


## I. INTRODUCTION

The entanglement between different qubits has recently become a focus of activity in quantum physics[1], because of experiments on non-local features of quantum mechanics and the development of quantum information physics. In the past few years, several key features of the proposal in [2], including the production of entangled states and the implementation of quantum controlled operations between a pair of trapped ions, have already been experimentally demonstrated[4-6]. Meanwhile, several alternative theoretical schemes[7-10] have also been developed for overcoming various difficulties in realizing a practical ion-trap quantum information processor.

## II. MODEL

In this work, we propose an effective scheme for realizing the communication and logic operations between different trapped ions by a single-step operation, performed by using different laser beams synchronously. Following Sørensen and Mølmer [10], the Hamiltonian describing two trapped cold ions driven by a pair of synchronous laser beams is

$$
\begin{equation*}
\hat{H}(t)=\hbar \nu\left(\hat{a}^{\dagger} \hat{a}+\frac{1}{2}\right)+\hbar \omega_{0} \sum_{j=1}^{2} \frac{\hat{\sigma}_{z, j}}{2}+\frac{\hbar}{2} \sum_{j=1}^{2} \Omega_{j}\left\{\hat{\sigma}_{+, j} \exp \left\{i\left[\eta_{j}\left(\hat{a}^{\dagger}+\hat{a}\right)-\omega_{j} t-\phi_{j}\right]\right\}+H . c .\right\} . \tag{1}
\end{equation*}
$$

Under the rotating wave approximation, this system is exactly solvable even if the usual Lamb-Dicke approximation is not made. For brevity, the expressions for the solutions are omitted here and will be presented elsewhere.

## III. RESULTS

Based on the exact solutions of the rotating wave approximation to the Hamiltonian (1), here we focus on how to realize in one step both two-qubit controlled operations and two-qubit entangled states between ion 1 and 2 beyond the Lamb-Dicke limit. This is achieved by properly setting up the controllable experimental parameters, e.g., the Lamb-Dicke parameters $\eta_{j}$, the carrier Rabi frequencies $\Omega_{j}$, the frequencies $\omega_{j}(j=1,2)$ and duration of the applied synchronous pulses.

1. The $\hat{C}^{Z}$ gate

$$
\begin{equation*}
\hat{C}_{12}^{Z}=\left|g_{1}\right\rangle\left|g_{2}\right\rangle\left\langle g_{1}\right|\left\langle g_{2}\right|+\left|g_{1}\right\rangle\left|e_{2}\right\rangle\left\langle g_{1}\right|\left\langle e_{2}\right|+\left|e_{1}\right\rangle\left|g_{2}\right\rangle\left\langle e_{1}\right|\left\langle g_{2}\right|-\left|e_{1}\right\rangle\left|e_{2}\right\rangle\left\langle e_{1}\right|\left\langle e_{2}\right|, \tag{2}
\end{equation*}
$$

can be realized directly by using a pair of red-sideband pulses.
2. if a resonant pulse is applied to ion 2 and a off-resonant pulse is simultaneously applied to ion 1 , we find that the two-qubit controlled operation

$$
\begin{equation*}
\hat{C}_{12}=\left|g_{1}\right\rangle\left|g_{2}\right\rangle\left\langle g_{1}\right|\left\langle g_{2}\right|+\left|g_{1}\right\rangle\left|e_{2}\right\rangle\left\langle g_{1}\right|\left\langle e_{2}\right| \pm i e^{-i \phi_{2}}\left|e_{1}\right\rangle\left|g_{2}\right\rangle\left\langle e_{1}\right|\left\langle e_{2}\right| \pm i e^{i \phi_{2}}\left|e_{1}\right\rangle\left|e_{2}\right\rangle\left\langle e_{1}\right|\left\langle g_{2}\right|, \tag{3}
\end{equation*}
$$

[^0]can be implemented directly. These gates are equivalent to the exact CNOT gate, except for a local rotation.
3. Two-qubit entangled states
\[

$$
\begin{equation*}
\left|\psi_{12}^{-}\right\rangle=U\left|g_{1}\right\rangle\left|e_{2}\right\rangle-V\left|e_{1}\right\rangle\left|g_{2}\right\rangle, \quad\left|\psi_{12}^{+}\right\rangle=V\left|g_{1}\right\rangle\left|e_{2}\right\rangle+U\left|e_{1}\right\rangle\left|g_{2}\right\rangle, \tag{4}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
\left|\phi_{12}^{-}\right\rangle=U\left|g_{1}\right\rangle\left|g_{2}\right\rangle-V\left|e_{1}\right\rangle\left|e_{2}\right\rangle, \quad\left|\phi_{12}^{+}\right\rangle=V\left|g_{1}\right\rangle\left|g_{2}\right\rangle+U\left|e_{1}\right\rangle\left|e_{2}\right\rangle \tag{5}
\end{equation*}
$$

can be generated from the dynamical evolutions of the non-entangled initial states $\left|g_{1}\right\rangle\left|e_{2}\right\rangle,\left|e_{1}\right\rangle\left|g_{2}\right\rangle$ and $\left|g_{1}\right\rangle\left|g_{2}\right\rangle$, $\left|e_{1}\right\rangle\left|e_{2}\right\rangle$, respectively. These entangled states become the relevant two-qubit maximally entangled states, i.e., EPR states:

$$
\begin{equation*}
\left|\Phi_{12}^{ \pm}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|g_{1}\right\rangle\left|g_{2}\right\rangle \pm\left|e_{1}\right\rangle\left|e_{2}\right\rangle\right), \quad\left|\Psi_{12}^{ \pm}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|g_{1}\right\rangle\left|e_{2}\right\rangle \pm\left|e_{1}\right\rangle\left|g_{2}\right\rangle\right) \tag{6}
\end{equation*}
$$

if the experimental parameters are set up properly.
4. The EPR states, e.g., $\left|\Phi_{12}^{-}\right\rangle$and $\left|\Psi_{12}^{+}\right\rangle$, can also be generated by sequentially using the a single-qubit rotation and the controlled operation introduced above,

$$
\left\{\begin{array}{l}
|m\rangle\left|g_{1}\right\rangle\left|g_{2}\right\rangle \xrightarrow{\hat{r}_{1}}|m\rangle \otimes \frac{1}{\sqrt{2}}\left(\left|g_{1}\right\rangle\left|g_{2}\right\rangle-i e^{-i \varphi_{1}}\left|e_{1}\right\rangle\left|g_{2}\right\rangle\right) \xrightarrow{\hat{C}_{12}}|m\rangle \otimes\left|\Phi_{12}^{-}\right\rangle,  \tag{7}\\
|m\rangle\left|g_{1}\right\rangle\left|g_{2}\right\rangle \xrightarrow{\hat{r}_{1}}|m\rangle \otimes \frac{1}{\sqrt{2}}\left(\left|g_{1}\right\rangle\left|g_{2}\right\rangle,-i e^{-i \varphi_{1}}\left|e_{1}\right\rangle\left|g_{2}\right\rangle\right) \xrightarrow{\hat{C}_{12}^{\prime}}|m\rangle \otimes\left|\Psi_{12}^{+}\right\rangle
\end{array}\right.
$$

## IV. CONCLUSIONS

Based on the exact conditional quantum dynamics for two trapped ions driven by a pair of synchronous laser beams, we have shown that, under certain conditions, the quantum controlled gates and entanglement between a pair of trapped ions can be realized deterministically by only a single-step operation. The CM mode of ions always remains in its initial quantum state after the operation.

Compared to other approaches for coherently manipulating a pair of ions, the present scheme has some advantages. First, compared to the the previous multi-pulse schemes for two-qubit controlled gates (see, e.g., $[2,8,9]$ ), the present single-step operational scheme may be easily tested experimentally, as the undesired dynamical phase evolution[11] related to the delay time between different operations is avoided completely. It may be more important that the present scheme can be used to describe a laser-ion coupling of arbitary strength, while previous schemes (see, e.g., $[2,10]$ ) based on the LD approximation are only effective in the weak-coupling regime.

## V. ACKNOWLEDGMENTS

We acknowledge the support of the Frontier Research System at RIKEN, Japan; the US AFOSR, ARDA, NSA; and the US national Science Foundation grant No. EIA-0130383.
[1] See, e.g., the following reviews: C.H. Bennett and D.P. DiVincenzo, Nature, 44, 247 (2000); A. Ekert and R. Josza, Rev. Mod. Phys. 68, 733 (1996); A.M. Steane, Rep. Prog. Phys. 61, 117 (1998).
[2] J.I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091 (1995).
[3] D. Kielpinski, et al, Science 291, 1013 (2001); F. Schmidt-Kaler, et al, J. Mod. Opt. 47, 2573 (2000).
[4] C. Monroe et al., Phys. Rev. Lett. 75, 4714 (1995); B. E. King et al., Phys. Rev. Lett. 81, 1525 (1998); Ch. Roos et al., Phys. Rev. Lett. 83, 4713 (1999).
[5] Q.A. Turchette et al., Phys. Rev. Lett. 81, 3631 (1998); D.J. Wineland and W.M. Itano, Phys. Rev. A 20, 1521 (1979).
[6] C.A. Sckett et al., Nature (London) 404, 256 (2000); H.C. Ngerl et al., Phys. Rev. A 60, 145 (1999).
[7] L.M. Duan, J.I. Cirac, and P. Zoller, Science 292, 1695 (2001); L.X. Li and G.C. Guo, Phys. Rev. A 60, 696 (1999).
[8] L.F. Wei, S.Y. Liu and X.L. Lei, Phys. Rev. A 65, 062316 (2002).
[9] D. Jonathan et al., Phys. Rev. A 62, 042307 (2000).
[10] K. Mølmer and A. Sørensen, Phys. Rev. Lett. 82, 1835 (1999); A. Sørensen and K. Mølmer, ibid. 821971 (1999); Phys. Rev. A 62, 022311 (1999); A. Svandal and J. P. Hansen, Phys. Rev. A 65, 033406 (2002).
[11] G.B. Berman, G.D. Doolen, and V.I. Tsifrinvovish, Phys. Rev. Lett. 84, 1615 (2000); Mang Feng, Phys. Rev. A 63, 052308 (2001).


[^0]:    * Corresponding author (Email: fnori@riken.jp).
    ${ }^{\dagger}$ Permanent address.

