A remark on concavity of the function appearing in quantum reliability function

S. Furuichi¹, K.Yanagi² and K.Kuriyama²

¹Tokyo University of Science in Yamaguchi, Onoda city, Yamaguchi, 756-0884, Japan ²Yamaguchi University, Ube city, Yamaguchi, 755-8611, Japan

In quantum information theory, it is important to study the properties of the function $E_q(\pi, s)$, which will be defined in the below, appearing in the lower bound with respect to the random coding in the reliability function for general quantum states. In classical information theory [1], the random coding exponent $E_r^c(R)$, the lower bound of the reliability function, is defined by

$$E_r^c(R) = \max_{p,s} [-sR + E_c(p,s)].$$

As for the function $E_c(p, s)$, it is well-known the following properties [1].

(a)
$$E_c(p, 0) = 0.$$

(b) $\frac{\partial E_c(p,s)}{\partial s}|_{s=0} = I(X;Y)$, where I(X;Y) presents the classical mutual information.

(c)
$$E_c(p,s) > 0$$
 ($0 < s \le 1$). $E_c(p,s) < 0$ ($-1 < s \le 0$).

(d)
$$\frac{\partial E_{\rm c}(p,s)}{\partial s} > 0$$
, $(-1 < s \le 1)$.

(e)
$$\frac{\partial^2 E_{\rm C}(p,s)}{\partial s^2} \le 0$$
, $(-1 < s \le 1)$

In quantum case, the corresponding properties to (a),(b),(c) and (d) have been shown in [3, 5]. Also the concavity of the function $E_q(\pi, s)$ is shown in the case when the signal states are pure [4], and when the expurgation method is adopted [5]. However, for general signal states, the concavity of the function $E_q(\pi, s)$ which corresponds to (e) in the above has remained as an open question [3, 5].

The reliability function of classical-quantum channel is defined by

$$E(R) \equiv -\liminf_{n \to \infty} \frac{1}{n} \log P_e(2^{nR}, n), \quad 0 < R < C,$$
(1)

where *C* is a classical-quantum capacity, *R* is a transmission rate $R = \frac{\log_2 M}{n}$ (*n* and *M* represent the number of the code words (or dimension of the Hilbert spaces) in input system and output system, respectively), $P_e(M, n)$ can be taken any minimal error probabilities of min_{W,X} $\bar{P}(W, X)$ or min_{W X} $P_{max}(W, X)$. These error probabilities are defined by

$$\bar{P}(\mathcal{W}, \mathsf{X}) = \frac{1}{M} \sum_{j=1}^{M} P_j(\mathcal{W}, \mathsf{X}),$$
$$P_{\max}(\mathcal{W}, \mathsf{X}) = \max_{1 \le j \le M} P_j(\mathcal{W}, \mathsf{X}),$$

where

$$P_j(\mathcal{W}, \mathsf{X}) = 1 - \mathrm{Tr}S_{w^j}X_j$$

is the usual error probability associated with the positive operator valued measurement $X = \{X_j\}$ satisfying $\sum_{j=1}^{M} X_j \leq I$. Here we note S_{w^j} represents the density operator corresponding to the code word w^j choosen from the code(blook) $\mathcal{W} = \{w^1, w^2, \dots, w^M\}$. For details, see [2, 3, 5].

The lower bound for the quantum reliability function defined in Eq.(1), when we use random coding, is given by

$$E(R) \ge E_r^q(R) \equiv \max_{\pi} \sup_{0 < s \le 1} \left[E_q\left(\pi, s\right) - sR \right],$$

where $\pi = \{\pi_1, \pi_2, \dots, \pi_a\}$ is a priori probability distribution satisfying $\sum_{i=1}^{a} \pi_i = 1$ and

$$E_{q}(\pi, s) = -\log G(s),$$

$$G(s) = \operatorname{Tr} [A(s)^{1+s}],$$

$$A(s) = \sum_{i=1}^{a} \pi_{i} S_{i}^{\frac{1}{1+s}},$$

where each S_i is density operator which corresponds to the output state of the classical-quantum channel $i \to S_i$ from the set of the input alphabet $A = \{1, 2, \dots, a\}$ to the set of the output quantum states in the Hilbert space \mathcal{H} . Then we have the following.

Proposition 0.1 For any real number s ($-1 < s \le 1$), density operators S_i ($i = 1, \dots, a$) and a priori probability $\pi = {\pi_i}_{i=1}^a$, if the inequality

$$\left(\sum_{i=1}^{a} \pi_{i} S_{i}^{\frac{1}{1+s}}\right)^{\frac{1}{2}} \left\{\sum_{j=1}^{a} \pi_{j} S_{j}^{\frac{1}{1+s}} \left(\log S_{j}^{\frac{1}{1+s}}\right)^{2}\right\} \left(\sum_{i=1}^{a} \pi_{i} S_{i}^{\frac{1}{1+s}}\right)^{\frac{1}{2}} \ge \left\{\sum_{i=1}^{a} \pi_{i} H\left(S_{i}^{\frac{1}{1+s}}\right)\right\}^{2}$$

holds, then the function

$$E_{q}(\pi, s) = -\log\left[\operatorname{Tr}\left\{\left(\sum_{i=1}^{a} \pi_{i} S_{i}^{\frac{1}{1+s}}\right)^{1+s}\right\}\right]$$

is concave in s.

References

- [1] R.G.Gallager, Information theory and reliable communication, John Wiley and Sons, 1968.
- [2] A.S.Holevo, The capacity of quantum channel with general signal states, IEEE.Trans.IT, Vol.44, 269(1998).
- [3] T.Ogawa and H.Nagaoka, Strong converse to the quantum channel coding theorem, IEEE.Trans.IT, Vol.45, 2486(1999).
- [4] M.V.Burnashev and A.S.Holevo, On reliability function of quantum communication channel, quant-ph/9703013.
- [5] A.S.Holevo, Reliability function of general classical-quantum channel, IEEE.Trans.IT, Vol.46, 2256(2000).