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It is investigated how local quantum operations in bipartite quantum systems induce a global
order or disorder. It is proven that if the global order is never recovered by any local operations
of the form ΛA ⊗ IB then the initial state ρ is necessarily a distillable entangled state satisfying
S(ρB) ≥ S(ρ), where S(ρ) denotes the von Neumann entropy and ρB = TrAρ. Furthermore, it is
also proven that if a state ρ is undistillable (separable or bound entangled) then the minimum von
Neumann entropy of the locally disturbed state minΛA S((ΛA ⊗ IB)ρ) is bounded from below by
S(ρB).
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Most of the basic tasks in quantum information pro-
cessing are boiled down to manipulations of quantum
entanglement. It is, therefore, of crucial importance to
understand the nature of quantum entanglement. The
quantitative properties of entanglement should be in
principle characterized by several entanglement measures
which are still intensively investigated [1], yet there are
still other viewpoints to see many aspects of quantum en-
tanglement such as the fidelity of quantum teleportation
[2], the capacity of dense coding [3], etc. In this note, I
consider density matrices or quantum states on Hilbert
space C

dA ⊗C
dB and investigate how local quantum op-

erations (on the local system A or B) induce an order or
a disorder to the global (A + B) system. A quantum op-
eration is represented by a completely positive and trace
preserving (CPTP) map Λ, which takes the form [4]

Λ(ρ) =
d2∑

i=1

ViρV †
i , (1)

where d is the dimension of the Hilbert space on which
ρ acts. The trace preserving condition TrΛ(ρ) = Trρ is
equivalent to the following equality.

d2∑
i=1

V †
i Vi = I. (2)

Eq. (1) is known as the operator-sum representation of
the quantum operation Λ. Hereafter, it is said that a
density matrix ρ1 is more disordered than a density ma-
trix ρ2 when S(ρ1) ≥ S(ρ2), where S(ρ) = −Tr(ρ log2 ρ)
denotes the von Neumann entropy. For example, if a d-
dimensional quantum state ρ is a maximally disordered
state, i.e., ρ = Id/d, then S(ρ) = log2 d, which is the max-
imal value of the von Neumann entropy. Conversely, if ρ
is a pure state, then S(ρ) = 0. In this sense, a pure state
is a completely ordered state. Separable states satisfy
S(ρB) ≤ S(ρ), where ρB = TrAρ is the reduced density
matrix on the system B. That is, ”Separable states are
more disordered globally than locally” as summarized in
[5]. This is the direct consequence of Theorem 1 of [5].

It is also derived from the following reduction criterion
[6–8].

Lemma 1 If ρ is not distillable, then IA ⊗ ρB − ρ is a
non-negative operator;

IA ⊗ ρB ≥ ρ. (3)

Noting the operator monotonicity of the logarithm [9],
i.e., if A ≥ B, then lnA ≥ lnB, it is easy to show that
Eq. (3) implies the entropic inequality S(ρB) ≤ S(ρ).
Conversely, if a state ρ is more disordered locally than
globally, i.e., S(ρB) > S(ρ), then ρ is distillable; it is
neither separable nor bound entangled [10].

In the following, I show that a state in which the global
order is never recovered by any local quantum operations
is necessarily entangled. More precisely, I prove the fol-
lowing theorem.

Theorem 1 If S(ρ) ≤ S((ΛA ⊗ IB)ρ) holds for every
CPTP map ΛA, then ρ is a distillable entangled state
satisfying S(ρB) ≥ S(ρ).

Proof. Suppose that S(ρB) < S(ρ) holds. Let us con-
sider the following CPTP map in the operator-sum rep-
resentation with dA operation elements Vi:

ΛA(σA) =
dA∑
i=1

ViσAV †
i , (4)

where σA is any density matrix on the system A. Here

Vi = U (i) |i〉A 〈i| , (i = 1, 2, · · · , dA), (5)

with |i〉A are orthogonal basis for the system A and U (i)

are dA × dA unitary matrices of the form:

U (i) =




1 · · · i − 1 i i + 1 · · · dA

0 · · · 0 1 0 · · · 0
0

∗ ... ∗
0


. (6)



It is easy to check that the trace preserving condition∑d
i=1 V †

i Vi = IA holds. The explicit calculation yields

dA∑
i=1

(Vi ⊗ IB)ρ(V †
i ⊗ IB) = |1〉A 〈1| ⊗ ρB. (7)

This state is obviously separable. The von Neumann en-
tropy for this state is calculated as

S((ΛA ⊗ IB)ρ) = S (|1〉A 〈1| ⊗ ρB) = S(ρB) < S(ρ). (8)

This completes the proof.
Theorem 1 is the main result of this note. Note that the
condition of Theorem 1 is not a necessary condition for
entanglement; even if a state ρ is an entangled state, it
does not necessarily satisfy the condition of Theorem 1.
Unfortunately, the converse of Theorem 1 does not hold
in general; many counter-examples on C3 ⊗ C3 systems
have been found numerically. On the other hand, numer-
ical searches on C2 ⊗ C2 systems suggest that the con-
verse holds for two qubit systems; max{0, S(ρB)− S(ρ)}
is weakly monotonic under quantum operations of the
form ΛA ⊗ IB . This is also pointed in [11], although it is
still unproven.

In the proof of Theorem 1, I have constructed a CPTP
map ΛA reducing the disorder of the global system ρ to
S(ρB). Is it possible to reduce the disorder further? The
answer is negative for undistillable states.

Theorem 2 If ρ is an undistillable (separable or bound
entangled) state, then

min
ΛA

S((ΛA ⊗ IB)ρ) = S(ρB), (9)

where the minimum is taken over all possible quantum
operations.

Proof. Because local operations cannot change an undis-
tillable state to a distillable one, the state (ΛA ⊗ IB)ρ is
also an undistillable state. Noting TrA((ΛA ⊗ IB)ρ) =
ρB and the fact that any undistillable state σ satisfies
S(σ) ≥ S(σB), we obtain S((ΛA ⊗ IB)ρ) ≥ S(ρB). The
equality holds for the quantum operation described in
the proof of Theorem 1. This completes the proof.

The numerical work on C2 ⊗ C2 and C3 ⊗ C3 systems
suggests that Theorem 2 holds for any state (undistill-
able or distillable) satisfying S(ρB) < S(ρ). Therefore, I
conjecture the following.

Conjecture 1 If ρ is a state such that S(ρB) < S(ρ),
then

min
ΛA

S((ΛA ⊗ IB)ρ) = S(ρB), (10)

where the minimum is taken over all possible quantum
operations.

In view of the optimal capacity of dense coding [12,13],

χ∗(ρ) = log2 dA + S(ρB) − S(ρ), (11)

Conjecture 1 leads a reasonable consequence; If χ∗(ρ) is
already below log2 dA - the classically achievable capac-
ity, the sender cannot boost up the capacity above the
classical limit by any local quantum operations.

In this note, the von Neumann entropy is adopted as
a measure of the disorder of states. Yet another way
to characterize the disorder of states exists. A notable
device is the theory of majorization [14], which is more
suitable to capture the notion of disorder as argued in [5].
Therefore, it is interesting to ask whether Theorem 1 or
Theorem 2 can be rephrased in terms of majorization.
This remains an open question for further research.
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