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Abstract.  The Quantum Fourier transform (QFT) is a key function to realize quantum computations. 
A QFT followed by measurement (MQFT) was demonstrated on a simple circuit based on fiber-optics. 
Error probability was estimated to be 0.01 per qubit. The MQFT was shown to be robust against 
imperfections in the rotation gate. A successful MQFT of 255 qubits was performed with single-photon 
inputs. 
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1 Introduction 

Shor's factorization algorithm [1] has proved the 
power of quantum computation over classical 
algorithms. The heart of the factorization and related 
quantum algorithms lies in the phase estimation  
algorithm [2]-[3] that consists of controlled-unitary 
operations and the quantum Fourier transform 
followed by a measurement (MQFT). The 
controlled-unitary operations provide an unknown 
phase according to the problem, and the MQFT then 
determines the phase to find the solution. The MQFT 
is known to be done semiclassically [4]. 

2 Quantum Circuit for MQFT 

In the serial phase estimation [5], an eigenvalue of a 
unitary transform U defines the phase as 
U|u>=exp[2πiφ]|u>. Our task is to determine the 
phase expressed in n bits by φ=φ12-1+···+φn2-n. The 
circuit operates on the target qubits in an eigenstate 
of U with one control qubit at each step.  Note that 
the initial control qubits are separable. The control 
qubits can be measured qubit by qubit, because they 
will be entangled with only the target qubits in the 
control unitary operation.  

We implemented the MQFT circuit with 
fiber-optic devices. Qubits are represented by the 
polarization of a single photon. The key device of the 
circuit is the rotation gate that gives a relative phase 

shift to the |1> state. We employed a fiber loop with 
a phase modulator to implement the rotation gate. 
The loop configuration is often referred to as a 
Sagnac interferometer, where orthogonally polarized 
photons propagate in opposite directions through the 
same fiber. The two basis states are subject to the 
identical phase fluctuation, so that the present MQFT 
circuit is robust to disturbances.  

The MQFT was demonstrated by putting a 
photon pulse sequence into the fiber-optic circuit. The 
photons were elliptically polarized according to 
random bit values φn,···,φ1. This simulated the output 
of the controlled-unitary operations. The average 
photon number in the pulse was set to less than one: 
0.7 photon/pulse at the input of the circuit and 0.1 
photon/pulse at the photon detector. The bit values 
were compared with the input bits. Figure 1 shows 
the results of 21 trials of 256 qubits. The inset shows 
the result of each trial. ‘Successfully transformed bits’ 
in the figure refers to the number of bits for which a 
QFT operation was done successfully. The 
distribution of the successful bits n obeyed a 
geometric distribution E(n)=(1-p)np with the error 
probability per qubit p=0.01. We succeeded making a 
QFT of 256 qubits in two trials. The average of the 
successfully transformed bits was 97. Further 
statistical analysis showed that the error probability 
per qubit was in the range of 2.6x10- 3≤p≤1.2x10-2 with 
the confidence level of 95%. 

The errors originated from imperfections in the 
interferometer and in the phase modulation. Dark 



counts were negligibly small in the photon detector  
[6]. The performance of the interferometer is 
characterized by visibility, v=98%.  The errors in the 
phase modulation result from the approximate 
rotation angle Φk and from the error in converting the 
rotation angle into the drive voltage. The latter can 
be reduced by careful calibration. The accuracy of the 
phase shift was determined by the precision of the 
electric pulse applied to the phase modulator. In most 
pulse generators, the precision is limited to three 
digits, i.e., 8-10 bits. This implies the rotation angle 
Φk should be truncated at the m-th bit (m<10). The 
phase error due to the truncation should not be 
significant [7], because the contribution from the j-th 
bit (j>m) decreases with the factor of 2-(j+1).  
Truncation at the m-th bit results in the phase error 
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We measured the phase error in 24151 rotations 
for m=5. The values of cosd were distributed in 
[0.98,1] and [-1,-0.98], with a mean value of ±0.9936. 
The worst values (±0.98) corresponded to a phase 
error of π/16. The obtained values agree quite well 
with Eq. (1)’s prediction. v and δ determine the error 
probability of the measurement: p=(1-vcosδ)/2. The 
values p=8.2×10-3 (by using <cosδ>=0.9936) and 
p=1.5×10-2 (by using cosδmax=0.98) agree with those 
estimated from the error of the QFT trials. 

3 Conclusion 

We have shown that MQFT with decision by 
majority is simple to implement and robust. The 
fault-tolerant QFT reduces the size of quantum 
circuit required to perform phase estimation. The 
remaining problems are in realizing the 
controlled-unitary operation; the QFT by itself will 
not provide an exponential speed up in comparison 
with classical algorithms. One possible construction 
of a quantum computer is the combination of 
photon qubit and atomic qubits. The photon qubit 
serves as a control qubit, which switches the unitary 
transform in the quantum circuit of target qubits 
made by atoms. The photon probes the circuit as the 
change in the polarization. MQFT then extracts the 
eigenvalue of the unitary transform. 
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Fig. 1  MQFT results of 256 qubits. Bars 
represent the distribution of the successful 
bits obtained in the experiment. The line is 
for a geometric distribution with p=0.01. The 
inset shows the result of each trial. 


