
Exact quantum Fourier transforms and discrete logarithm algorithms

Michele Mosca1 2 ∗ Christof Zalka1 †

1 Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
2 St. Jerome’s University and Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada

Abstract. We show how the quantum fast Fourier transform (QFFT) can be made exact for arbitrary
orders. For most quantum algorithms only the quantum Fourier transform of order 2n is needed, and this
can be done exactly. Kitaev [9] showed how to approximate the Fourier transform for any order. Here we
show how his construction can be made exact by using the technique known as “amplitude amplification”.
This construction e.g. allows to make Shor’s discrete logarithm quantum algorithm exact. Thus we have
the first example of an exact non black box fast quantum algorithm, thereby giving more evidence that
“quantum” need not be probabilistic. We also show that in a certain sense the family of circuits for the
exact QFFT is uniform. Namely the parameters of the gates can be calculated efficiently.

Keywords: Quantum Fourier Transform, Discrete Logarithm Problem, Exact algorithms

1 The exact QFFTp for large prime p

The quantum Fourier transform of order N acts on
“computational” basis states |x〉 as follows:

QFFTN : |x〉 → |Ψx〉 = 1
N

∑N−1
y=0 e2πi xy

N |y〉.
For arbitrary, in particular non-smooth N, Kitaev [9]

proposes to do this in two steps (second part of section
5 in [9], see also the review by Jozsa [8]):

|x〉 → |x, Ψx〉 → |Ψx〉
where, as usual, registers that “appear out of nowhere”
are understood to have been initialised in the standard
state |0〉. Similarly in the second step, one of the registers
is reset to this state and can thus again be left away.

The first step constructs the Fourier state |Ψx〉 for a
given x. This can be done exactly by first obtaining
the “uniform amplitude” superposition |Ψ0〉 of the first
p basis states of a register and then “rephasing” it:

|x, 0〉 → |x, Ψ0〉 → |x, Ψx〉. (1)

As pointed out by Kitaev, |Ψ0〉 can be obtained from |0〉
by a sequence of SO(2) rotations applied to each qubit.

The second step of Kitaev’s construction is the reverse
of |Ψx, 0〉 → |Ψx, x〉. Kitaev shows how to approximate
this transformation through a technique known as “eigen-
value estimation” (see also the article by Cleve et al. [3]),
which details how to find the eigenvalue of an unknown
eigenstate of some unitary U . Although this operation is
not exact, it leaves the eigenstate |Ψx〉 unchanged. Thus
it does:

|Ψx, 0〉 → |Ψx〉
∑

x′
cx,x′ |x′, gx,x′〉 (2)

where on the right hand side the superposition should be
dominated by the term with x′ = x, such that a mea-
surement would yield x with good probability. We also
included some (unwanted) “garbage” gx,x′ which may be
produced along with the eigenvalue. In the next sections
we show how we can make this part of the algorithm ex-
act using “amplitude amplification” [1] to eliminate all
but the desired term |x, gx,x〉.

We let the operator A correspond to the operation on
the right hand register in eq. 2 where the state |Ψx〉 will

∗mmosca@iqc.ca
†zalka@iqc.ca

be treated as a “spectator” that is not changed. We will
modify A so that its success probability is reduced to 1/4
(so that a single iteration of amplitude amplification leads
exactly to the desired state). The main tools necessary
for applying amplitude amplification are recognising the
correct solution and knowing the success probability so
that we may reduce it to exactly 1/4.

1.1 “Recognising” the correct solution
Amplitude amplification requires a way to “recognise”

the good states (i.e. apply the phase −1 to them and
leave the orthogonal complement unchanged). We must
check whether a number x′ is the correct eigenvalue of
|Ψx〉 (i.e. whether x′ = x). This can be done because
the eigenstate |Ψx〉 is still available exactly. Thus given
a state of the form |Ψx〉

∑
x′ cx,x′ |x′, gx,x′〉, we can check

the second register against the first one by applying the
reverse of the steps in eq. 1 to these two registers:

|x′,Ψx〉 → |x′, Ψx−x′〉 → |x′, θx−x′〉
where in the second step we only act on the second reg-
ister. The state |Ψ0〉 is mapped back to |0〉, while for
x′ 6= x we get some state |θx−x′〉 orthogonal to |0〉. We
can now apply the phase −1 to the |0〉 state and undo
the previous operations.

1.2 “Uniformising” the success probability
To use amplitude amplification to make algorithms ex-

act the success probability of the “heuristic” algorithm
A must be known. In our case the success probability of
eigenvalue estimation on |Ψx〉 depends on the (unknown)
value of x. We fix this problem by modifying A such that
the new success probability will become independent of
x and equal to the average over all instances for the orig-
inal A. To do this uniformisation we pick an integer r
uniformly at random from {0, 1, . . . p−1} (quantumly, i.e.
by preparing a uniform superposition of these values) and
replace |Ψx〉 with |Ψx+r〉, which is just a rephasing. We
keep a record of r and subtract it again from the result
of eigenvalue estimation.

So now exact amplitude amplification will allow us to
do |Ψx, 0〉 → |Ψx〉|x, gx,x〉.
To get rid of the “garbage” we can do the usual trick

of copying the wanted result x into an additional “save”
register and then undoing the previous steps. In total
this will lead to six applications of A for an exact QFFT.

1.3 Eigenvalue estimation
In the eigenvalue estimation phase we use a Fourier

transform to estimate the eigenvalue e−2πix/p of U for
eigenstate |Ψx〉, where U acts on computational basis
states as: |x〉 → |(x + 1) mod p〉. By carefully post-
selecting which y’s we keep, the instance independent
success probability of the uniformised algorithm is:

p̄ =
1
p

p−1∑

k=0

f2(k/p) where f(z) =
sin(πz)

N sin(πz/N)

and we have used that N and p are coprime and so for
each x there is exactly one k.

1.3.1 Calculate and adjust success probability
Using this exact description of the success probability

p for a given p, we modify the algorithm A so that it will
succeed exactly with probability 1/4. One way to do this
is to add a qubit prepared in state cos(α)|0〉 + sin(α)|1〉
with p sin2(α) = 1

4 and additionally require for success
that this qubit be in state |1〉. The preparation of this
qubit will now require one “strange” gate in our algo-
rithm, although its rotation angle α can be computed
efficiently in the following sense. We can show that for
each p and N , the success probability can be approxi-
mated efficiently in the sense that the computation time
is polynomial in the number of digits we want to com-
pute.

2 An exact discrete logarithm algorithm

An exact algorithm for the QFFT leads in a straight-
forward manner to an exact version of the discrete loga-
rithm algorithm (see [11, 12] for the bounded-error case)
of the same order. This was also observed for finite fields
of prime order by Brassard and Høyer [2] (Theorem 12).
For smooth orders (only small prime factors) the prob-
lem can easily be solved classically. We don’t have room
to review this here, but details are provided in the full
version of this paper.

3 Further remarks and observations

The construction of the exact QFFTq easily generalises
to arbitrary orders q. Also the discrete logarithm algo-
rithm can be generalised to arbitrary orders q. We also
give a more involved solution for the case when the fac-
torisation of the order q is not known. In our construction
we take care not to introduce new “special” gates during
the computation. This means that really the O(log q)
quantum runs can be put together into one quantum cir-
cuit whose gates can be computed from q alone (without
knowing its factorisation).

Let us also note that it is not clear how to make Shor’s
integer factorisation algorithm exact with the techniques
used here. Thus this is a challenge that remains. We
note that Mosca [10] shows how to make factorisation
exact in a slightly generalised model of exact quantum
computation.

3.1 Review of other work on the QFFT
It is interesting to note that after Kitaev [9] a more

efficient and probably also more natural way to approx-
imate the QFFT for arbitrary orders has been given by
Hallgren and Hales [7]. In particular their construction
uses fewer qubits, but it seems not to lend itself to the
techniques used here to make it exact. Also note the sim-
plified “semiclassical” version of the standard QFFT by
Griffiths and Niu [6].

Acknowledgements
Ch.Z. would like to thank D.M. Jackson for discus-

sions on summing the mth powers of the first n integers.
He is supported by CSE and MITACS. M.M. thanks R.
Cleve, L. Hales, and J. Watrous for discussions at MSRI.
M.M. holds a Canada Research Chair in Quantum Com-
putation and is supported by NSERC, MITACS, CFI,
ORDCF, and PREA.

References

[1] G. Brassard, P. Høyer and A. Tapp, Quantum
Counting, ICALP’98.

[2] G. Brassard and P. Høyer, An Exact Quantum
Polynomial-Time Algorithm for Simon’s Problem,
ISTCS’97.

[3] R. Cleve, A. Ekert, C. Macchiavello and M. Mosca,
Quantum Algorithms revisited, Proc. R. Soc. Lond.
A (1998) 454, pp. 339-354.

[4] R. Cleve, A note on computing Fourier transforms
by quantum programs Unpublished (1994)
(http://pages.cpsc.ucalgary.ca/~cleve/papers.html)

[5] D. Coppersmith, IBM Research Report RC 19642
(1994) (also quant-ph/0201067).

[6] R. B. Griffiths and C. Niu, Semiclassical Fourier
Transform for Quantum Computation, Phys. Rev.
Lett. 76 (1996) pp.3228-3231.

[7] S. Hallgren and L. Hales, An Improved Quan-
tum Fourier Transform Algorithm and Applications,
FOCS 2000.

[8] R. Jozsa, Quantum Algorithms and the Fourier
Transform, Proc. R. Soc. Lond. A (1998) 454, pp.
323-337.

[9] A. Yu. Kitaev, Quantum measurements and the
Abelian Stabilizer Problem, quant-ph/9511026.

[10] M. Mosca, On the Quantum Derandomization of Al-
gorithms, manuscript in preparation; based on pre-
sentation at MSRI QIP workshop, Dec. 2002.

[11] P. Shor, Algorithms for Quantum Computation:
Discrete Logarithms and Factoring, FOCS 1994.

[12] D. Boneh and R. J. Lipton, Quantum Cryptanalysis
of Hidden Linear Functions, Advances in Cryptol-
ogy, CRYPTO 95.

