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Abstract. We extend the concept of the negativity, a good measure of entanglement for bipartite
pure states, to mixed states by means of the convex-roof extension. We show that the measure does
not increase under local quantum operations and classical communication, and derive explicit formulae
for the entanglement measure of isotropic states and Werner states, applying the formalism presented by
Vollbrecht and Werner [Phys. Rev. A 64, 062307 (2001)].
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Quantum information processing essentially depends
on several quantum mechanical phenomena, among
which entanglement has been considered as one of the
most crucial features. There are two important prob-
lems for entanglement. One is to find a method to deter-
mine whether a given state in an arbitrary dimensional
quantum system is separable or not, and the other is to
define the best measure quantifying an amount of entan-
glement of a given state. In order to solve these prob-
lems, various criteria for separability and not a few mea-
sures of entanglement have been proposed in recent years
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. Although the
perfect solutions for the problems have not yet been ob-
tained, quite a good criterion for separability, called the
positive partial transposition (PPT) criterion, was sug-
gested by Peres [1] and Horodecki et al. [3], and an en-
tanglement measure was naturally derived from the PPT
criterion [12, 15, 16]. The measure is called the negativity
[17, 12], and is defined by

N (ρ) =
‖ρTB‖1 − 1

d− 1
, (1)

where ρTB is the partial transpose of a state ρ in d ⊗ d′

(d ≤ d′) quantum system and ‖ · ‖1 is the trace norm.
However, although the positivity of the partial trans-

pose is a necessary and sufficient condition for nondis-
tillability in 2 ⊗ n quantum system [4, 18], there exist
entangled states with PPT in any bipartite system ex-
cept in 2 ⊗ 2 and 2 ⊗ 3 quantum systems [4, 8], that is,
there exist entangled states whose negativity are not pos-
itive. Hence, it is not sufficient for the negativity to be
a good measure of entanglement even in 2⊗ n quantum
system.

We now consider the negativity of pure states in d⊗d′

(d ≤ d′) quantum system, HA ⊗ HB . By the Schmidt
decomposition theorem, a given pure state |Ψ〉 can be
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written as

|Ψ〉 =
d−1∑
j=0

√
µj |ajbj〉 = UA ⊗ UB |Φ〉, (2)

where √µj are the Schmidt coefficients, UA and UB are
unitary operators defined by UA|j〉 = |aj〉 and UB |j〉 =
|bj〉 respectively, and

|Φ〉 =
d−1∑
j=0

√
µj |jj〉. (3)

Let
∣∣Ψ±

ij

〉
= (|ij〉 ± |ji〉) /

√
2. Then since the partial

transpose of |Φ〉〈Φ| is

|Φ〉〈Φ|TB =
d−1∑
k=0

µk|kk〉〈kk|+
∑
i<j

√
µiµj

∣∣Ψ+
ij

〉〈
Ψ+

ij

∣∣
+

∑
i<j

(
−√µiµj

) ∣∣Ψ−
ij

〉〈
Ψ−

ij

∣∣, (4)

we have

N (|Ψ〉〈Ψ|) = N (|Φ〉〈Φ|)

=
2

d− 1

∑
i<j

√
µiµj

≡ Np(~µ), (5)

where ~µ = (
√

µ0,
√

µ1, . . . ,
√

µd−1) is the Schmidt vector.
We note that Np(~µ) = 0 if and only if |Ψ〉 is separable,
and that Np((1, 1, . . . , 1)/

√
d) = 1. Thus Np can be a

measure of entanglement for bipartite pure states in any
dimensional quantum system, and can be extended to
mixed states ρ by means of the convex roof,

Nm(ρ) ≡ min∑
k pk|Ψk〉〈Ψk|=ρ

∑
k

pkNp(~µk), (6)

where ~µk is the Schmidt vector of |Ψk〉. The extended
measure Nm is called the convex-roof extended negativity
(CREN). Then we can readily show that Nm(ρ) = 0 if
and only if ρ is separable. This implies that the CREN
can recognize the difference between separability and



bound entanglement, which may not be done by the orig-
inal negativity. We can also show that Nm(ρ) ≥ N (ρ),
by the convexity of the original negativity N [12]. In
2 ⊗ 2 quantum system, it follows from a straightfor-
ward calculation that the CREN Nm is equivalent to the
Wootters’s concurrence [7, 11] since Np(~µ) = 2

√
µ0µ1 =

|〈Ψ|Ψ̃〉| = C(|Ψ〉), where ~µ is the Schmidt vector of |Ψ〉,
|Ψ̃〉 = σy ⊗ σy|Ψ∗〉, and C is the Wootters’s concurrence.

Monotonicity of entanglement under local quantum op-
erations and classical communication (LOCC) is consid-
ered as one of natural requirements which good measures
of entanglement must hold. Vidal [19] gave a nice recipe
for building entanglement monotones in bipartite quan-
tum system by showing that the convex-roof extension of
a pure-state measure E satisfying the following two con-
ditions is an entanglement monotone: (i) For a reduced
density matrix ρA = trB |Ψ〉〈Ψ| of a pure state |Ψ〉, the
function f on the space of density matrices defined by
f(ρA) = E(|Ψ〉) is invariant under unitary operations,
that is, for any unitary operator U

f(UρAU†) = f(ρA). (7)

(ii) The function f is concave, that is, for any density
matrices ρ1, ρ2, and any λ ∈ [0, 1],

f(λρ1 + (1− λ)ρ2) ≥ λf(ρ1) + (1− λ)f(ρ2). (8)

In this paper, we show that the CREN is an entangle-
ment monotone, by verifying that Np satisfies the above
conditions.

Even though it is generally not so easy to calculate the
value of the convex-roof extension of a pure-state mea-
sure, we can simplify the computation of entanglement
measures for states that are invariant under a group of
local symmetries [12, 14, 20, 21], such as isotropic states
[9] and Werner states [22].

In this paper, we derive explicit formulae for the CREN
of isotropic states and Werner states, exploiting the for-
malism presented by Vollbrecht and Werner [21]. This
formalism originated from the method of Terhal and Voll-
brecht [20], who gave an exact formula for the entan-
glement of formation for isotropic states, and a subse-
quent work by Rungta and Caves [14] recently provided
explicit expressions for the concurrence-based entangle-
ment measures of isotropic states. These computational
results imply that the newly defined measure, CREN, is
an entanglement measure not only to show the difference
between separability and bound entanglement, but also
to be computed as well as other convex-roof extended
measures of entanglement.
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