Quantum Cloning of Mixed States in Symmetric Subspace
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Abstract.

Quantum cloning machine for arbitrary mixed states in symmetric subspace is proposed.

This quantum cloning machine can be used to copy part of the output state of another quantum cloning
machine and is useful in quantum computation and quantum information. The shrinking factor of this
quantum cloning achieves the well-known upper bound. When the input is identical pure states, two

different fidelities of this cloning machine are optimal.
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A simple but practical quantum cloning task:
A quantum state cannot be cloned exactly because of
the no-cloning theorem[1]. However, quantum cloning
approximately (or probabilisticaly) is necessary in quan-
tum computation and quantum information[2]. Suppose
we have the following task: we have a pure unknown
quantum state in 2-level system (qubit) |¥). We need
one copy of this quantum state to perform one quantum
computation. But we do not need it to be exactly the
original one. A copy of |¥) with fidelity of at least 7/9
can give a reliable result. And also we need another 3
identical quantum states each with the fidelity of at least
79/108 to perform another reliable quantum computa-
tion. If the fidelities of the quantum states are less than
the demanding fidelities, the quantum computation will
not be reliable any more. This is certainly a simple and
rather practical quantum cloning task. However, we still
cannot reach this simple goal by the present available
optimal quantum cloning machines.

Let’s next analyze why the present available quantum
cloning machines fail to do this work. 1, First we try
to use the 1 to 4 optimal quantum cloning machine pro-
posed by Gisin and Massar[3] to do this work. By this
cloning machine, we can copy |¥) to 4 identical quan-
tum states each with fidelity 3/4 which is larger than
79/108 but less than 7/9. That means we can obtain a
reliable result in the second quantum computation but
we cannot have a reliable result in the first quantum
computation. 2, We may use first the 1 to 2 cloning
machine which is proposed by Buzek and Hillery[4, 5].
With one output state doing the first quantum compu-
tation, then we use another quantum state as input and
use the 1 to 3 Gisin-Massar cloning machine to create
another 3 identical quantum states. Omne can find the
quantum state of the first cloning machine can achieve
the fidelity 5/6 which is better than the demanding fi-
delity 7/9. However, the 3 identical quantum states can
only achieve the fidelity 37/54 which is lower than the
demanding fidelity. So, we cannot finish our task by us-
ing this method. 3, One is perhaps tempted to use Cerf’s
asymmetric quantum cloning machine[6] to do this work.
The advantage of using Cerf’s asymmetric cloning ma-
chine is that we can let one quantum state achieve the
fidelity 7/9 while another one still has the optimal fidelty

*fan@qci.jst.go.jp

No-cloning theorem, quantum cloning machine, fidelity.

since this cloning machine achieve the bound of the no-
cloning theorem proposed by Cerf, see appendix for the
detail. Then we use the Gisin-Massar 1 to 3 cloning ma-
chine to create another 3 identical quantum states. By
calculation we can find if one quantum state has fidelity
7/9, the optimal fidelity achieved by another quantum
state is 11 + 2\/6/18 =~ 0.88. However, we need it at
least 11/12 = 0.92 to create reliable 3 identical quantum
states by using Gisin-Massar cloning machine. So, we
still cannot achieve our aim.

The quantum cloning machine which can ac-
complish the previous quantum cloning task: Is
this task in principal cannot be accomplished since no-
cloning theorem? By simple calculation we can show that
this goal in principal can be achieved. The following is
one method. We can first use the Gisin-Massar 1 to 3
cloning machine. And after this quantum cloning, we
can use one quantum state which has fidelity 7/9 to per-
form the first quantum computation which will give the
reliable result. The remaining quantum state is a two
qubits mixed state in symmetric subspace. The theory
of Bruss, Ekert and Macchiavello (BEM) [7] shows that
the optimal shrinking factor, which has a simple relation
with fidelity for pure state, of 2 to 3 cloning machine
can achieve 5/6. So, we can obtain 3 quantum states
each with fidelity 79/108 which will also give a reliable
result in the second quantum computation. Thus both
two quantum computations will give reliable results. The
Gisin-Massar cloning machine can only copy 2 identical
pure states to 3 copies. The problem is that here the
input state of 2 qubits is a mixed states in symmetric
space which cannot be copied by the available cloning
machines. So we must construct a 2 to 3 optimal cloning
machine which can use a mixed state in symmetric sub-
space as input.

One can imagine that a lot of other similar problems
exist in the quantum computation. In this paper we
will first present explicitly the quantum cloning machine
which can accomplish the above mentioned task. And
further some more complicated tasks similar to the above
one can also be accomplished. Our result is actually
rather general. We will present the optimal quantum
cloning machine which can use arbitrary d-level mixed
states in symmetric subspace as input. And the cloning
machine is optimal since it achieves the upper bound of
the shrinking factor [7, 8, 9]. The cloning machine pre-



sented in this paper can also be used directly to ana-
lyze the security of quantum key distribution when all
d + 1 mutually unbiased states are used which provides
the most secure protocol in d-level quantum system, here
d is assumed to be prime number in this quantum key
distribution protocol.

Let’s study the quantum cloning task presented above.
We assume the available unknow quantum state is ex-
pressed as |¥) = a| 1) + 8| |) with |a|?> + |B]? = 1. First
we use Gisin-Massar 1 to 3 cloning machine[3] which will
create 3 copies of |¥) approximately. One output state
is prea. = 5/9|¥)(¥| + 2/9 - I, where I is the identity.
The fidelity of peq. with the original quantum state |¥)
is 7/9 which achieve the threshold to give a reliable re-
sult in the first quantum computation. The remaining 2
qubits state which is obtained after tracing out 1 qubit
used for the first quantum computation from the output
state takes the form
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))/V/2 is the normalized symmetric state. This state is a
mixed state so we cannot use available quantum cloning
machines to obtain 3 copies. We propose the following 2

to 3 cloning machine to accomplish this task
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where state |2 1, |) is a normalized symmetric state with
2 spin up and 1 spin down. We remark that the quan-
tum cloning transformations (2,3) are the same as Gisin-
Massar’s original cloning machine where the input are
identical pure states. The cloning transformation (4) is
a new relation. In the quantum cloning processing with

input p(Tzezi. in (1), we first add blank state and the an-
cilla state, perform the quantum cloning transformations
listed as (2,3,4), trace out the ancilla states and finally
obtain 3 identical copies. The final reduced density op-
erator of one single qubit has fidelity 79/108 compared
with the initial available qubit |¥). Thus we show explic-
itly how to accomplish the simple but rather practical
cloning task in quantum computation. This is a simple
example to show that the cloning machine which can use
any mixed states in symmetric space is very important
in quantum computation.

The general quantum cloning machine: A much
general problem is that part of the output state from
one cloning machine is used for one quantum computa-
tion. The remaining quantum state need to be further
cloned to create more copies but with a lower fidelity for
another quantum computation. One can easily imagine

more complicated problems where more than 2 cloning
machines are needed. All of these problems can be solved
if we can construct the cloning machines which can copy
any mixed states in symmetric space.

With one simple but non-trivial example solved, we
next present our general result. We assume {|i),7 =
1,---,d} as orthonormal basis of d-level quantum sys-
tem. We define m = {my,---,mq}, and denote |mi)
as completely symmetrical states with m, states in |¢),
where Zle m; = M, these are orthonormal basis of
symmetric subspace of M d-level quantum system. Any
quantum states in symmetric subspace is invariant un-
der arbitrary permutations. We propose the following
universal quantum cloning machine,

Uliit) © R =Y agliit + B) B, (5)
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where ) means summation over all possible parame-
ters under the restriction ) . k; = N — M, R represents
blank states and ancilla states of the cloning machine be-
fore the cloning processing. R are the ancilla states of
the output, we can simplely realize them by symmetric
quantum state |E) A simple example of this quantum
cloning machine has already been presented in (2,3,4).
Performing unitary transformation U, tracing out the an-
cilla states, we can obtain the output density operator
plo®) = Tr,U(p ® R)UT. The amplitude of the output
states take the form

1

.
m

where n = /(N — M){(M +d — 1)!/(N +d — 1)! is the
normalization factor. We know the BEM bound can be
achieved for identical pure input states by Werner[8] and
Keyl and Werner[9] (WKW) cloning machine. Here we
show that BEM bound is the tight bound not only for
pure states but also for arbitrary states in symmetric
subspace. We can find the cloning transformation (5,6)
realizes the WKW [8, 9] cloning machine.
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