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Abstract.

Given a class {p, | & € I} of events induced by M-state 1qfa’s on alphabet X, we investigate

the size (number of states) of lqfa’s §-approximating convex linear combinations of {p, | @ € I}. We

obtain:

e A O((M/6%) dlog®(d/8?)) size bound, where d is the Vapnik dimension of {p,(w) | w € *}.

e A O((M/6?)logn) size bound, for p,’s n-periodic. This shows the existence of a Monte Carlo 1qfa
recognizing the language L,, = {a*" | k € N} with bounded error € and O((1/€%)logn) states.

e A O((1/62)logn) size bound for inducing a d-approximation of (1 + p)/2, for any n-periodic event p

whose
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1 Introduction

1-way quantum finite automata (1gfa’s, for short) [2,
4, 6, 7] are computational devices particularly interesting
since they represent a theoretical model for a quantum
computer with finite memory.

Formally, a (measure-once [3, 5, 9]) lafa with g con-
trol states on the input alphabet X is a system A =
(m,U(o), P), where m € C'*9, for each 0 € &, U(0) €
C?*1 is a wunitary matrix, and P € C?%%9 is a projec-
tor that biunivocally individuate the observable O =
1-P+40- (I — P). The stochastic event induced by A is
the function p4 : ¥* — [0, 1] defined by pa(o1...0k) =

2
Hﬂ' (Hle U(ai)) PH , with || || the vector norm.

In this work, we study the size (number of states) of
1qgfa’s whose induced events approximate given stochastic
events in the following sense:

Definition 1 A §-approzimation in L of a given
stochastic event p : ¥* — [0,1] is any stochastic event
q: X* —[0,1] satisfying sup,cx- {|p(w) — g(w)|} < 6.

2 Approximating the convex closure of
classes of stochastic events

Given a family F = {po:X*—=[0,1]|ael}
of stochastic events induced by M-state 1qgfa’s
(Ta, Ua(c), Py), let F be the convex closure of F, i.e., the
class of stochastic events £ obtained as convex linear com-
bination {(w) = Y, c;ba@a(w) (ba >0, Y crba = 1).
We are interested in estimating the number of states of
1gfa’s inducing events that d-approximate £ € F.

Since b, > 0and ). ;ba = 1, we can interpret b,’s as
a probability distribution on I. For any w € ¥*, ¢4 (w)
becomes a random variable with expectation E[p,(w)] =
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iscrete Fourier transform has ¢;-norm not exceeding n.

Y acr bawa(w) = {(w). We can approximate such an ex-
pectation by an empirical average of the events in . To
this purpose, we design the following algorithm:

for t:=1to S do
aft] := a independently chosen in I
with probability bq;
output the 1gfa A defined as

S S
A= <\/]_/—S@7Ta[t],@Ua[t](a)7 @Pa[t]) ’

t=1 t=1

where ‘@’ denotes matrix direct sum.
First of all, observe that the stochastic event ¥g :
¥* — [0,1] induced by A is defined, for any w € ¥*,

as Ys(w) = (1/5) Ele Pap(w), i.e., s is an empirical
average of the events in F. Now, if

Prob {wup {le(w) — vs(w)l} > 5} <1

holds true, then the existence of an (S - M)-state lgfa
inducing a é-approximation of £ is guaranteed.

g

is a classical problem of uniform convergence of empirical
averages to their expectations [1, 10].

Estimating

wen*

s
Prob { sup {‘% Z Pap)(w) — Elpa(w)]

2.1 General framework

A general solution can be given in terms of the
Vapnik dimension of the class of random variables
{oa(w) | w € £*} (see [1] for more details).

Definition 2 Given a class F of functions ¢ : I — [0,1]
and 8 € (0,1), a subset A C I is said to be shattered by F
if, for every X C A, there exists ¢ € F for which x € X
implies o(z) > B, and z € A — X implies ¢p(z) < B.
Then the Vapnik dimension V-dim{F} is the mazimal
cardinality of shattered subsets of I.



As an easy consequence of Theorem 3.6 in [1], for S =
O(sdlog® &), where d = V-dim{pq(w) | w € £*}, we
have Prob {sup,,cs- {|{(w) — ¥s(w)|} > 6} < 1. There-
fore we can conclude:

Theorem 3 If {p,(w) | w € X*} is a class of stochas-
tic events induced by M-state 1qgfa’s, then every con-
vez linear combination {(w) = ), c;bawa(w) can be 4-
approximated by a 1qfa with O((;Mg,dlog2 6%) states, where
d = V-dim{p,(w) | w € *}.

2.2 The unary periodic case

We directly solve the problem in the very simple
case of periodic events. We consider the class F =
{pa : {a}* —[0,1] | « € I} where every ¢, is an n-
periodic event. Then, we rewrite Equation (1) by consid-
ering the union bound and Hoffdings’ inequality [8] as

Prob{ sup {|7/)S(ak) _ E(ak)|} > (5} <n- 262825

0<k<n
i —28%8 ;
By requiring n - 2e < 1, we obtain

Theorem 4 Given a family VU of n-periodic events in-
duced by M -state 1qfa’s, any event in the convex closure
of ¥ can be §-approzimated by the event induced by a 1gfa
with O((M/§%)logn) states.

We can apply this latter result to language recognition.
A unary language L C {a}" is said to be recognized by
a lgfa A in Monte Carlo mode if and only if there exists
e € (0,1/2) such that, for any k > 0: a* € L implies
pa(a®) =1, a* ¢ L implies pa(a¥) <e.

Consider the language L, = {a*" | k € N}. We get,
thus improving [2]

Theorem 5 For any n > 1, there exists a 1qfa accept-
ing L, in Monte Carlo mode with bounded error € and
O((1/€®)1logn) states.

3 Approximating a family of periodic
events

We present a class of n-periodic events that are ap-
proximable by events induced by O(logn)-state 1gfa’s.

Let p: {a}* — [0, 1] be an n-periodic event completely
characterized by the vector (p(¢),p(a),...,p(a"1)). Its
discrete Fourier transform is the complex vector P =
(P(0),...,P(n—1)) such that P(j) = Y p_e p(a*)et=H.

2

For any k > 0, we have p(a*) = %27;01 P(j)eiwki,
The ¢;-norm of P is || P ||ly= Y727 [P(j)|-

Theorem 6 Let p: {a}* — [0,1] be an n-periodic event
whose discrete Fourier transform P satisfies || P |1= n.
Then, the event (1 +p)/2 is §-approzimable by the event
induced by a 1qfa with O((1/6%)logn) states.

Proof. We can expand p by its discrete Fourier trans-
form P. Setting P(j) = p;e®’s and p ranging in [0,1],
we get p(a*) = Z;L;Ol b1 cos (2Zkj — ¥;) . Since || P ||1=
Z;:(} pj = n, we can interpret p;/n as a probability dis-

tribution on Z,. Any event ¢;(a*) = cos? (%kg — %J)

is induced by a 2-state 1qfa. By applying the algo-
rithm in Section 2, and considering Theorem 4, there
exists a lqfa with O((1/62)logn) states inducing the

stochastic event 1 (a*) = %Zil cos? (%k][t] _ %) ’

which is a d-approximation of the event (1 + p)/2 for
S =0((1/6%)1logn). O

This result can be easily extended to encompass peri-
odic events for which || P [|;< n.

Again, we can apply this result to language recog-
nition. Given an event p : {a}* — [0,1] and a real
A € [0,1], the unary language Ly defined by p with cut-
point A writes as Ly = {a* | k € N, p(a*) > A}. The cut-
point is said to be isolated if there exists a positive real
§ such that |p(a®) — A\| > 6, for any k > 0. Moreover, if p
is induced by a lgfa A then L) is said to be recognized
by A with cut point A (isolated by 4).

We can immediately obtain

Theorem 7 Let p: {a}* — [0,1] be an n-periodic event
whose discrete Fourier transform P satisfies | P ||1< n,
and let L be a unary language defined by p with cut point
A isolated by 26. Then L can be recognized by a 1qfa with
cut point L + 1\ isolated by & and O((1/62)logn) states.

References

[1] N. Alon, S. Ben-David, N. Cesa-Bianchi and D. Haus-
sler. Scale-Sensitive Dimensions, Uniform Conver-
gence, and Learnability. J. ACM, 44:615-631, 1997.

[2] A. Ambainis and R. Freivalds. 1-way quantum finite
automata: strengths, weaknesses and generalizations.
In Proc. 39th FOCS, pp. 332-342, 1998.

[3] A. Bertoni and M. Carpentieri. Regular languages ac-
cepted by quantum automata. Information and Com-
putation, 165:174-182, 2001.

[4] A. Bertoni, C. Mereghetti and B. Palano. Quan-
tum computing: 1-way quantum automata. In Proc.
7th Conf. Develop. Lang. Th., LNCS 2710, pp. 1-20,
Springer, 2003.

[5] A. Brodsky and N. Pippenger. Characterizations of
1-way quantum finite automata. SIAM J. Comput.,
31:1456-1478, 2001.

[6] J. Gruska. Quantum Computing. McGraw-Hill, 1999.

[7] J. Gruska. Descriptional complexity issues in quan-
tum computing. J. Aut. Lan. Comb., 5:191-218, 2000.

[8] W. Hoffdings. Probability inequalities for sums of
bounded random variables. J. American Statistical
Association, 58:13-30, 1963.

[9] C. Moore and J. Crutchfield. Quantum automata and
quantum grammars. Theoretical Computer Science,
237:275-306, 2000.

[10] V.N. Vapnik and A.Y. Chervonenkis. On the uni-
form convergence of relative frequencies of events to
their probabilities. Th. Prob. App., 16:264-280, 1971.



