Approximating Stochastic Events by Quantum Automata*

Alberto Bertoni¹ †

Carlo Mereghetti^{1 ‡}

Beatrice Palano^{1 §}

Abstract. Given a class $\{p_{\alpha} \mid \alpha \in I\}$ of events induced by M-state 1qfa's on alphabet Σ , we investigate the size (number of states) of 1qfa's δ -approximating convex linear combinations of $\{p_{\alpha} \mid \alpha \in I\}$. We obtain:

- A $O((M/\delta^3) d \log^2(d/\delta^2))$ size bound, where d is the Vapnik dimension of $\{p_\alpha(w) \mid w \in \Sigma^*\}$.
- A $O((M/\delta^2)\log n)$ size bound, for p_{α} 's *n*-periodic. This shows the existence of a Monte Carlo 1qfa recognizing the language $L_n = \{a^{kn} \mid k \in \mathbf{N}\}$ with bounded error ε and $O((1/\varepsilon^3)\log n)$ states.
- A $O((1/\delta^2)\log n)$ size bound for inducing a δ -approximation of (1+p)/2, for any n-periodic event p whose discrete Fourier transform has ℓ_1 -norm not exceeding n.

Keywords: stochastic events, quantum automata

1 Introduction

1-way quantum finite automata (1qfa's, for short) [2, 4, 6, 7] are computational devices particularly interesting since they represent a theoretical model for a quantum computer with finite memory.

Formally, a (measure-once [3, 5, 9]) 1qfa with q control states on the input alphabet Σ is a system $A = (\pi, U(\sigma), P)$, where $\pi \in \mathbf{C}^{1 \times q}$, for each $\sigma \in \Sigma$, $U(\sigma) \in \mathbf{C}^{q \times q}$ is a unitary matrix, and $P \in \mathbf{C}^{q \times q}$ is a projector that biunivocally individuate the observable $\mathcal{O} = 1 \cdot P + 0 \cdot (I - P)$. The stochastic event induced by A is the function $p_A : \Sigma^* \to [0, 1]$ defined by $p_A(\sigma_1 \dots \sigma_k) = \left\|\pi\left(\prod_{i=1}^k U(\sigma_i)\right)P\right\|^2$, with $\|\cdot\|$ the vector norm.

In this work, we study the size (number of states) of 1qfa's whose induced events approximate given stochastic events in the following sense:

Definition 1 A δ -approximation in L^{∞} of a given stochastic event $p: \Sigma^* \to [0,1]$ is any stochastic event $q: \Sigma^* \to [0,1]$ satisfying $\sup_{w \in \Sigma^*} \{|p(w) - q(w)|\} \leq \delta$.

2 Approximating the convex closure of classes of stochastic events

Given a family $\mathcal{F}=\{\varphi_{\alpha}:\Sigma^{*}\to[0,1]\mid \alpha\in I\}$ of stochastic events induced by M-state 1qfa's $(\pi_{\alpha},U_{\alpha}(\sigma),P_{\alpha})$, let $\tilde{\mathcal{F}}$ be the convex closure of \mathcal{F} , i.e., the class of stochastic events ξ obtained as convex linear combination $\xi(w)=\sum_{\alpha\in I}b_{\alpha}\varphi_{\alpha}(w)$ $(b_{\alpha}\geq 0,\sum_{\alpha\in I}b_{\alpha}=1)$. We are interested in estimating the number of states of 1qfa's inducing events that δ -approximate $\xi\in\tilde{\mathcal{F}}$.

Since $b_{\alpha} \geq 0$ and $\sum_{\alpha \in I} b_{\alpha} = 1$, we can interpret b_{α} 's as a probability distribution on I. For any $w \in \Sigma^*$, $\varphi_{\alpha}(w)$ becomes a random variable with expectation $E[\varphi_{\alpha}(w)] =$

 $\sum_{\alpha \in I} b_{\alpha} \varphi_{\alpha}(w) = \xi(w)$. We can approximate such an expectation by an empirical average of the events in \mathcal{F} . To this purpose, we design the following algorithm:

for t := 1 to S do $\alpha[t] := \alpha$ independently chosen in I with probability b_{α} ; output the 1qfa A defined as

$$A = \left(\sqrt{1/S} igoplus_{t-1}^S \pi_{lpha[t]}, igoplus_{t-1}^S U_{lpha[t]}(\sigma), igoplus_{t-1}^S P_{lpha[t]}
ight),$$

where '\(\operatornum '\) denotes matrix direct sum.

First of all, observe that the stochastic event $\psi_S: \Sigma^* \to [0,1]$ induced by A is defined, for any $w \in \Sigma^*$, as $\psi_S(w) = (1/S) \sum_{t=1}^S \varphi_{\alpha[t]}(w)$, i.e., ψ_S is an empirical average of the events in \mathcal{F} . Now, if

$$\operatorname{Prob}\left\{\sup_{w\in\Sigma^*}\left\{|\xi(w)-\psi_S(w)|\right\}\geq\delta\right\}<1\tag{1}$$

holds true, then the existence of an $(S \cdot M)$ -state 1qfa inducing a δ -approximation of ξ is guaranteed.

Estimating

$$\left.\operatorname{Prob}\left\{\sup_{w\in\Sigma^*}\left\{\left|\frac{1}{S}\sum_{t=1}^S\varphi_{\alpha[t]}(w)-E[\varphi_{\alpha}(w)]\right|\right\}\geq\delta\right\}$$

is a classical problem of uniform convergence of empirical averages to their expectations [1, 10].

2.1 General framework

A general solution can be given in terms of the Vapnik dimension of the class of random variables $\{\varphi_{\alpha}(w) \mid w \in \Sigma^*\}$ (see [1] for more details).

Definition 2 Given a class \mathcal{F} of functions $\psi: I \to [0,1]$ and $\beta \in (0,1)$, a subset $A \subset I$ is said to be shattered by \mathcal{F} if, for every $X \subset A$, there exists $\varphi \in \mathcal{F}$ for which $x \in X$ implies $\varphi(x) \geq \beta$, and $x \in A - X$ implies $\varphi(x) < \beta$. Then the Vapnik dimension V-dim $\{\mathcal{F}\}$ is the maximal cardinality of shattered subsets of I.

¹ Dipartimento di Scienze dell'Informazione, Università degli Studi di Milano via Comelico 39/41, 20135 Milano, Italy.

^{*}Partially supported by MURST, under the projects "Linguaggi formali: teoria ed applicazioni" and "FIRB: Complessità descrizionale di automi e strutture correlate".

[†]bertoni@dsi.unimi.it

 $^{^{\}ddagger}$ mereghetti@dsi.unimi.it

[§]palano@dsi.unimi.it

As an easy consequence of Theorem 3.6 in [1], for $S=O(\frac{1}{\delta^3}d\log^2\frac{d}{\delta^2})$, where $d=\text{V-dim}\{\varphi_\alpha(w)\mid w\in\Sigma^*\}$, we have $\operatorname{Prob}\{\sup_{w\in\Sigma^*}\{|\xi(w)-\psi_S(w)|\}\geq\delta\}<1$. Therefore we can conclude:

Theorem 3 If $\{\varphi_{\alpha}(w) \mid w \in \Sigma^*\}$ is a class of stochastic events induced by M-state 1qfa's, then every convex linear combination $\xi(w) = \sum_{\alpha \in I} b_{\alpha} \varphi_{\alpha}(w)$ can be δ -approximated by a 1qfa with $O(\frac{M}{\delta^3} d \log^2 \frac{d}{\delta^2})$ states, where $d = V\text{-dim}\{\varphi_{\alpha}(w) \mid w \in \Sigma^*\}$.

2.2 The unary periodic case

We directly solve the problem in the very simple case of periodic events. We consider the class $\mathcal{F} = \{\varphi_{\alpha} : \{a\}^* \to [0,1] \mid \alpha \in I\}$ where every φ_{α} is an n-periodic event. Then, we rewrite Equation (1) by considering the union bound and Höffdings' inequality [8] as

$$\operatorname{Prob}\left\{\sup_{0 < k < n} \left\{ |\psi_S(a^k) - \xi(a^k)| \right\} \geq \delta \right\} \leq n \cdot 2\mathrm{e}^{-2\delta^2 S}.$$

By requiring $n \cdot 2e^{-2\delta^2 S} < 1$, we obtain

Theorem 4 Given a family Ψ of n-periodic events induced by M-state 1qfa's, any event in the convex closure of Ψ can be δ -approximated by the event induced by a 1qfa with $O((M/\delta^2)\log n)$ states.

We can apply this latter result to language recognition. A unary language $L \subset \{a\}^*$ is said to be recognized by a 1qfa A in Monte Carlo mode if and only if there exists $\varepsilon \in (0,1/2)$ such that, for any $k \geq 0$: $a^k \in L$ implies $p_A(a^k) = 1$, $a^k \notin L$ implies $p_A(a^k) \leq \varepsilon$.

Consider the language $L_n = \{a^{kn} \mid k \in \mathbb{N}\}$. We get, thus improving [2]

Theorem 5 For any n > 1, there exists a 1qfa accepting L_n in Monte Carlo mode with bounded error ε and $O((1/\varepsilon^3)\log n)$ states.

3 Approximating a family of periodic events

We present a class of n-periodic events that are approximable by events induced by $O(\log n)$ -state 1qfa's.

Let $p:\{a\}^* \to [0,1]$ be an n-periodic event completely characterized by the vector $(p(\varepsilon),p(a),\ldots,p(a^{n-1}))$. Its discrete Fourier transform is the complex vector $P=(P(0),\ldots,P(n-1))$ such that $P(j)=\sum_{k=0}^{n-1}p(a^k)\mathrm{e}^{i\frac{2\pi}{n}kj}$. For any $k\geq 0$, we have $p(a^k)=\frac{1}{n}\sum_{j=0}^{n-1}P(j)\,\mathrm{e}^{-i\frac{2\pi}{n}kj}$. The ℓ_1 -norm of P is $\|P\|_1=\sum_{j=0}^{n-1}|P(j)|$.

Theorem 6 Let $p: \{a\}^* \to [0,1]$ be an n-periodic event whose discrete Fourier transform P satisfies $||P||_1 = n$. Then, the event (1+p)/2 is δ -approximable by the event induced by a 1qfa with $O((1/\delta^2)\log n)$ states.

Proof. We can expand p by its discrete Fourier transform P. Setting $P(j) = \rho_j \mathrm{e}^{i\vartheta_j}$ and p ranging in [0,1], we get $p(a^k) = \sum_{j=0}^{n-1} \frac{\rho_j}{n} \cos\left(\frac{2\pi}{n}kj - \vartheta_j\right)$. Since $\|P\|_1 = \sum_{j=0}^{n-1} \rho_j = n$, we can interpret ρ_j/n as a probability distribution on \mathbf{Z}_n . Any event $\phi_j(a^k) = \cos^2\left(\frac{\pi}{n}kj - \frac{\vartheta_j}{2}\right)$

is induced by a 2-state 1qfa. By applying the algorithm in Section 2, and considering Theorem 4, there exists a 1qfa with $O((1/\delta^2)\log n)$ states inducing the stochastic event $\psi(a^k) = \frac{1}{S} \sum_{t=1}^S \cos^2\left(\frac{\pi}{n}kj[t] - \frac{\vartheta_{j[t]}}{2}\right)$, which is a δ -approximation of the event (1+p)/2 for $S = O((1/\delta^2)\log n)$.

This result can be easily extended to encompass periodic events for which $||P||_1 < n$.

Again, we can apply this result to language recognition. Given an event $p:\{a\}^* \to [0,1]$ and a real $\lambda \in [0,1]$, the unary language L_{λ} defined by p with cutpoint λ writes as $L_{\lambda} = \{a^k \mid k \in \mathbb{N}, \ p(a^k) > \lambda\}$. The cutpoint is said to be isolated if there exists a positive real δ such that $|p(a^k) - \lambda| \geq \delta$, for any $k \geq 0$. Moreover, if p is induced by a 1qfa A then L_{λ} is said to be recognized by A with cut point λ (isolated by δ).

We can immediately obtain

Theorem 7 Let $p: \{a\}^* \to [0,1]$ be an n-periodic event whose discrete Fourier transform P satisfies $||P||_1 \le n$, and let L be a unary language defined by p with cut point λ isolated by 2δ . Then L can be recognized by a 1qfa with cut point $\frac{1}{2} + \frac{1}{2}\lambda$ isolated by δ and $O((1/\delta^2)\log n)$ states.

References

- [1] N. Alon, S. Ben-David, N. Cesa-Bianchi and D. Haussler. Scale-Sensitive Dimensions, Uniform Convergence, and Learnability. *J. ACM*, 44:615–631, 1997.
- [2] A. Ambainis and R. Freivalds. 1-way quantum finite automata: strengths, weaknesses and generalizations. In Proc. 39th FOCS, pp. 332-342, 1998.
- [3] A. Bertoni and M. Carpentieri. Regular languages accepted by quantum automata. *Information and Computation*, 165:174–182, 2001.
- [4] A. Bertoni, C. Mereghetti and B. Palano. Quantum computing: 1-way quantum automata. In Proc. 7th Conf. Develop. Lang. Th., LNCS 2710, pp. 1–20, Springer, 2003.
- [5] A. Brodsky and N. Pippenger. Characterizations of 1-way quantum finite automata. *SIAM J. Comput.*, 31:1456-1478, 2001.
- [6] J. Gruska. Quantum Computing. McGraw-Hill, 1999.
- [7] J. Gruska. Descriptional complexity issues in quantum computing. J. Aut. Lan. Comb., 5:191–218, 2000.
- [8] W. Höffdings. Probability inequalities for sums of bounded random variables. *J. American Statistical Association*, 58:13–30, 1963.
- [9] C. Moore and J. Crutchfield. Quantum automata and quantum grammars. *Theoretical Computer Science*, 237:275–306, 2000.
- [10] V.N. Vapnik and A.Y. Chervonenkis. On the uniform convergence of relative frequencies of events to their probabilities. Th. Prob. App., 16:264–280, 1971.