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Abstract. We show that quantum computation circuits using coherent states as the logical qubits can
be constructed from simple linear networks, conditional photon measurements and “small” coherent su-
perposition resource states.
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Quantum optics has proved a fertile field for exper-
imental tests of quantum information science. How-
ever, quantum optics was not thought to provide a prac-
tical path to efficient and scalable quantum computa-
tion. This orthodoxy was challenged when Knill et al.[1]
showed that, given single photon sources and single pho-
ton detectors, linear optics alone would suffice to imple-
ment efficient quantum computation. While this result
is surprising, the complexity of the optical networks re-
quired is daunting.

More recently it has become clear that other, quite
different versions of this paradigm are possible. In par-
ticular, by encoding the quantum information in multi-
photon coherent states, rather than single photon states,
an efficient scheme which is elegant in its simplicity
has been proposed [2]. The required resource, which
may be produced non-deterministically, is a superposi-
tion of coherent states (commonly referred to as “cat”
states). Given this, the scheme is deterministic and re-
quires only relatively simple linear optical networks and
photon counting. Unfortunately the amplitude of the
required resource states is prohibitively large. Here we
build on this idea and show that with only a moderate
increase in complexity a scheme based on much smaller
superposition states is possible.

The power of the scheme stems from the ability to
generate entangled states and make Bell basis measure-
ments with simple linear interactions. This means tele-
portation protocols of various forms can be implemented
deterministically to great effect. In particular, splitting
a cat state of the form 1/

√
2(| −

√
2 α〉 + |

√
2 α〉) on

a 50:50 beamsplitter produces the entangled Bell state,
1/

√
2(| − α,−α〉 + |α, α〉).

A synopsis of the basic elements of our scheme are as
follows,

The qubits: the logical qubits are encoded in coherent
states with |0〉L ≡ | − α〉 and |1〉L ≡ |α〉, where we take
α to be real. The approximation of orthogonality is good
for α even moderately large as |〈α| − α〉|2 = e−4α2

. We
will assume that α ≥ 2, which gives |〈α| − α〉|2 ≤ 1.1 ×
10−7. Measurement of the qubit values can be achieved
with high efficiency by homodyne detection with respect
to a local oscillator phase reference.
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Phase Rotation Gate, R(Z, θ): consider an arbitrary
single qubit rotation about Z, R(Z, θ) = exp{−i θ

2
Z}.

This can be implemented by displacing our qubit a small
distance and then using teleportation (see Fig 1).
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Figure 1: Schematics of implementing the R(Z, θ) gate.
(a) The bare gate; its operation is near deterministic for
a sufficiently small value of θ/α. Repeated application of
this gate can build up a finite rotation with high proba-
bility. (b) The teleported gate; its operation is determin-
istic, however it may need to be applied several times in
order to achieve the correct rotation. In the diagrams, B
represents a cat-Bell measurement.

Controlled Phase Gate, R(Z ⊗ Z,−φ): A non-trivial
2-qubit gate, R(Z ⊗ Z,−φ) = exp{iφ

2
Z ⊗ Z}, can be

implemented in a similar way to the single qubit rotation
(see Fig 2).

Superposition Gate, R(X, π/2): to complete our set
of gates we now describe how to implement a rotation of
π/2 about X , ie R(X, π/2) = exp{−iπ

4
X}. The gate is

shown schematically in Fig 3.

The gates R(Z, θ), R(X, π/2) and R(Z ⊗ Z,−π/2)
form a universal set. An arbitrary sin-
gle qubit rotation can be constructed from
R(Z,ψ)R(X, π/2)R(Z, φ)R(X,−π/2)R(Z, ω) and
R(Z ⊗ Z,−π/2) is locally equivalent to a CNOT.

In order to implement the above gates we’ve made use
of various simpler components such as X and Z gates,
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Figure 2: Schematics of implementing the R(Z ⊗
Z,−π/2) gate. (a) The bare gate; its operation is near
deterministic for a sufficiently small value of θ2α2 where
the reflectivity of the beamsplitter is δ = cos2 θ

2
. Re-

peated application of this gate can build up to a π/2
rotation with high probability. (b) The teleported gate;
its operation is deterministic.

and cat and cat-bell measurements. These can be imple-
mented in the following manner

Bit-flip Gate X : the logical value of a qubit can be
flipped by delaying it with respect to the local oscillator
by half a cycle.

Sign-flip Gate Z: a “sign flip” or Z gate, can be
achieved via teleportation [3] as follows. A Bell basis
measurement is made on the qubit state and one half of
the entangled Bell state. Depending on which of the four
possible outcomes are found, bit flips may be necessary to
correct the results. After X correction the gate has two
possible outcomes: either the identity has been applied,
in which case we repeat the process, or else the required
transformation has been implemented.

Cat basis measurement, C: we define a cat basis
measurement to be some procedure that projects the
state of an optical mode onto one of the two states
1
√

2
(| − α〉 ± |α〉). If our input state consists only of

an arbitrary superposition of these 2 states then cat-
basis measurement can be achieved by simply count-
ing the photons in the mode. An even number of
detected photons indicates measurement of the state
1
√

2
(| − α〉 + |α〉), and an odd number of photons indi-
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Figure 3: Schematics of implementing the R(X, π/2)
gate. (a) The bare gate; its operation is near determin-
istic for a sufficiently small value of θ2α2. Replacement
of the dashed section with the repeated application of
the gate of Fig.2(a) can build up to a R(X, π/2) rotation
with high probability. (b) The teleported gate; its opera-
tion is deterministic. In the diagrams, C represents a cat
measurement.

cates measurement of 1
√

2
(| − α〉 − |α〉). Of course, this

will require very high quality photon detectors which can
reliably distinguish n from n+ 1 photons when n ∼ α2.

Cat-Bell measurement, B: in order to perform a Bell
basis measurement on two modes (say, modes a and b)
containing coherent state qubits we can employ the fol-
lowing procedure [4, 5]. Allow the two qubits to interfere
at a 50:50 beam splitter, then use photon counters to
measure the number of photons in each mode. We can
then identify the four possible results: an even/odd num-
ber of photons in mode a and zero photons in mode b, or
vice-versa. These results correspond to each of the four
Bell-cat states.

In this presentation we will discuss the details and per-
formance of this scheme.
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