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Abstract. The black-boxed oracle of the Bernstein-Vazirani problem can be trivially imitated by a set
of cNOT gates. From this perspective, the solution is an obvious consequence of the ability of Hadamard
gates to exchange the target and control qubits of a cNOT gate. Viewed in this way the solution does
not even hint at quantum parallelism. The only role quantum mechanics plays is through its (remarkable)
ability to reverse the action of a cNOT gate by means of local operations on the target and control qubits.
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Let fa(x) = x · a be a function from n bit integers to
{0, 1}, where a is a fixed n bit integer and x · a is the
bitwise modulo 2 inner product: x · a = x0a0 ⊕ · · · ⊕
xn−1an−1, where ⊕ indicates addition modulo 2. We
are given a unitary black-boxed oracle Ua that takes the
state of an n-qubit input register and one-qubit output
register, |x〉n| y〉1, into |x〉n| y⊕ fa(x)〉1. The Bernstein-
Vazirani problem is to determine the integer a with the
least number of invocations of the oracle. With a classical
computer one can learn the j-th bit of a by applying
the oracle to x = 2j , thereby requiring n invocations
to find the n-bit number a. Since any other classical
input x will give some modulo-2 linear combination of the
bits of a, and since one needs n independent such linear
combinations to determine a, n invocations is the best
you can do classically. But with a quantum computer a
single call to the oracle suffices.

The conventional demonstration of this wonderful abil-
ity of a quantum computer starts by applying an n-
fold Hadamard transformation to the input register (ini-
tially set to all 0’s) to convert it to the familiar equally
weighted superposition of all 2n possible inputs. (“Mas-
sive quantum parallelism.”) One then puts 1 into the
output register and applies one more Hadamard to it,
thereby converting the shift by fa(x) into multiplication
by (−1)fa(x). Then the oracle Ua is called, and then an-
other n-fold Hadamard is applied to the input register.
The combined effect of all this is not hard to work out,
and one finds that there is a very convenient complete
destructive interference leading to the vanishing of every
single term in the final state of the input register except
for | a〉n. So with one invocation of Ua, preceded and fol-
lowed by the application of Hadamards, starting with the
initial state | 0〉n| 1〉1, one ends up with the input register
in the state | a〉n and can then learn a by measuring the
qubits of the input register.

There is a complementary way to look at this same
solution that makes it obvious why it works, without any
invocation of massive quantum parallelism. The idea is to
note that since Ua functions as a black box, a procedure
that does not break open the black box cannot depend
on the actual circuitry inside of that box, provided the
circuitry does indeed produce the promised output. So
we can try to build the black box out of gates that make
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the effect of the Hadamards on its operation completely
transparent.

For the Bernstein-Vazirani oracle this is easily done.
We can implement Ua by a collection of cNOT gates, one
for each non-zero bit of a. The target of each cNOT is
the output register, and the control bits are just those
bits of the input register that correspond to the non-zero
bits of a. This does precisely what Ua has to do. If
the input register starts in the state |x〉n and the output
register starts in the state | y〉1, then cNOTs combine to
shift y by 1 (modulo 2) for every non-zero bit of x that
corresponds to a non-zero bit of a.

With this implementation of the oracle, the Bernstein-
Vazirani problem is to find out where the cNOTs that
make up Ua have been placed, just by applying Ua, with-
out opening the black box and looking inside it. One
cannot solve the problem by opening the black box —
the obvious classical move — because the box might not

in fact, contain this simple collection of cNOT gates. But
because Ua acts as if it contained such a collection of
cNOT gates, if we can learn merely from applying Ua

where those cNOT gates would have to be placed to im-
itate Ua perfectly, we will have learned the value of a

whether or not that is how Ua actually does work.
Now consider what happens when n + 1 Hadamards

are applied both before and after applying Ua. If the
black box contains cNOT gates, the Hadamards simply
convert each of them into a “swapped” cNOT gate that
acts the other way around, with control and target ex-
changed: (H ⊗ H)Cij(H ⊗ H) = Cji. Because we have
started with 1 in the output register, every one of the
swapped cNOT’s has 1 for its control bit, so it acts as
NOT on its target. Because we have started with all
qubits of the input register set to 0, and because the tar-

get qubits of the swapped cNOTs corresponded to the
nonzero bits of a, the swapped cNOTS act to set to 1
just those qubits needed to convert the initial state | 0〉n
of the input register into the final state | a〉n, whose sub-
sequent measurement gives a.

So because Ua acts as if it were a collection of cNOT
gates controlled by qubits corresponding to the non-zero
bits of a, when sandwiched between Hadamards it acts
as if it were a collection of swapped cNOT gates, whose
action, when the state of the input and output registers
is initially | 0〉n| 1〉1, is simply to convert the state of the
input register to | a〉n.


