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Abstract. Ordering physical states is the key to quantifying some physical property of those states
uniquely. Bipartite pure entangled states are totally ordered under LOCC in the asymptotic limit and
uniquely quantified by the well-known entropy of entanglement. However, we show that mixed entangled
states are partially ordered under LOCC even in the asymptotic limit. Therefore, non-uniqueness of
entanglement measure is proven based on an operational notion of asymptotic convertibility.
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Accessibility between two physical states by some
physical process is crucial in being able to compare the
states quantitatively. When there exists an operation
that converts one state to another, we can derive an
ordering between the two states from the accessibility
based on this operation. This ordering (together with
a few other natural assumptions) makes it possible to
define a quantity that compares the states. However, if
it is impossible to convert one state into another in ei-
ther direction within a given framework, there exists no
coherent way to compare those two states.

Uniqueness of a measure that quantifies a certain phys-
ical property is strongly related to ordering of states.
When all elements in a given set of physical states can
be completely ordered, i.e., arbitrary two states can be
ordered (total order), we can make at least one consis-
tent measure that quantifies the set. However, if there
exists no ordering that works globally, i.e., a certain pair
of states cannot be ordered (partial order), then we fail
to find a consistent way to “align” all the states. In other
words, total order is a necessary condition for a set to be
quantified by the unique measure.

One of the most familiar examples in physics that con-
tain partial order is in special theory of relativity. A pair
of events in the space-time that include each other in their
light-cone (i.e., the interval between the two events is
time-like) are accessible because one can affect the other
by sending some signal. However, if one is outside of the
light-cone of the other (i.e., the interval between the two
events is space-like), then it is impossible to connect them
by any physical operation. There exists no unique way
of ordering such two states; different orderings are pos-
sible by choosing different reference frames. Therefore,
the set of events is a partially ordered one, which leads
to the well-known non-uniqueness of simultaneity that
follows from the principles of special theory of relativity
(See Chapter 17 of [1], for example). Furthermore, in a
modern approach to relativity, a fundamental structure
of spacetime is modeled as a partially ordered set called
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a causal set [2].
The most beautiful and successful application of the

theory of ordering physical states is in thermodynamics,
where all equilibrium states are totally ordered under adi-
abatic processes and quantified by the unique measure of
entropy S. Given two equilibrium states (A and B), A
can access B via an adiabatic process iff S(A) ≤ S(B).
(If the equality holds, B can also access A and so the pro-
cess becomes reversible.) The uniqueness of entropy was
proven by Giles with his axiomatic approach, which was
developed to clarify the structure of thermodynamics [3].
(This approach has recently been revisited in Ref. [4].)

It has been shown recently that thermodynamics and
theory of quantum entanglement share the same mathe-
matical structure. Adiabatic processes in thermodynam-
ics correspond to manipulations of bipartite entangled
pure states by local operations and classical communi-
cation(LOCC) [5]. Therefore, bipartite entangled pure
states are totally ordered under LOCC in the asymp-
totic limit, and entropy gives the unique measure in the
context as well (known as the von Neumann entropy of
entanglement [6]).

Contrary to the case of bipartite pure states, the
unique measure of entanglement in mixed states has not
been established yet. It has been proven that if two en-
tanglement measures coincide in pure states but differ
in mixed states, then they impose different orderings [7].
In fact, some entanglement measures proposed so far are
different.

In this work, we rigorously prove that there exists no
unique way of defining entanglement measure in mixed
states by proving that bipartite mixed states are partially
ordered under LOCC [8]. In other words, we completely
refute the possibility of the unique measure by showing
that different orderings are inevitable under LOCC. The
proof invokes Giles’s axioms, especially Axiom 5, which
reads If two states A and B are both accessible from an-
other state C, then A and B are accessible in either di-
rection (or both). This is the exactly what distinguishes
total order from partial one. We show that entangled
mixed states are partially ordered by giving a counterex-
ample to Axiom 5. (For other natural axioms and details



of Giles’s approach, see Refs. [3, 5].)
The rigorous definition of accessibility here is as fol-

lows: A state ρ is convertible into a state σ if and only
if for every (arbitrarily small) real number ε, there exists
an integer n0, and a sequence of LOCC Ln such that for
any integer n ≥ n0 we have that ‖ Ln(ρ⊗n) − σ⊗n ‖≤ ε,
where ρ⊗n = ρ ⊗ ρ · · · ⊗ ρ represents a tensor product
of n copies of the state ρ and || · · · || denotes the usual
trace norm distance between two mixed quantum states.
With this definition, we discuss convertibility between
two different states of the same number of copies.

Intuitively, bipartite mixed states that are most likely
to fail this axiom are bound entangled states [9]. Since
bound entangled states are mixed states from which no
entangled pure state can be distilled, if we take one of
those and a pure entangled state as a pair of possible can-
didates for a counterexample, the first half of the proof
has already been accomplished by definition. So, all we
have to do is to prove the inconvertibility in the opposite
direction.

In order to prove that, we take a certain positive-
partial-transposition (PPT) bound entangled state ρAB

of a 3 × 3 system given in Ref. [10]. The impor-
tant fact about the state ρAB is that its entanglement
cost EC(ρAB) is positive, which is defined as EC(ρ) ≡
limn→∞ Ef (ρ⊗n)/n [11], where Ef (ρ) represents the en-
tanglement of formation of ρ [12]. Owing to this prop-
erty, one can choose an entangled pure state σAB = |φ〉〈φ|
such that 0 < EC(σAB) < EC(ρAB). For simplicity, we
choose |φ〉 to be an entangled states with Schmidt num-
ber two or three, i.e., a 2×2 or 3×3 system. Since the
entanglement cost EC is an entanglement monotone, i.e.,
it cannot increase under LOCC, σAB can never be con-
verted into ρAB even asymptotically. The monotonicity
of entanglement cost EC can easily be derived from the
fact that entanglement of formation EF is also an entan-
glement monotone. Note that the above inconvertibility
holds in the sense of the same number of copies. Oth-
erwise, a sufficiently large number of copies of σAB can
always produce a much smaller number of copies of ρAB

with certainty.
Besides the above fact, note that a maximally entan-

gled state |Φ3〉AB with Schmidt number three can ac-
cess both ρAB and σAB without reducing the number of
copies. Therefore, we found a counterexample that two
states ρAB and σAB are not convertible into each other in
spite of the fact that both of them can be accessed from
the common state |Φ3〉AB. As we mentioned above, vio-
lation of Axiom 5 means that entangled mixed states are
partially ordered under LOCC in the asymptotic limit.
(We note that though, in Giles’s axioms, transformations
assisted by asymptotically negligible amount of auxiliary
states are considered, the undistillable property of bound
entanglement remains unchanged even with an assistance
of auxiliary entangled states [10].)

In the above argument, we chose a pure state as σAB

for simplicity. However, it can be replaced with distillable
mixed states χAB such that 0 < EC(χAB) < EC(ρAB)
because PPT bound entangled states cannot be con-
verted into negative-partial-transposition (NPT) states
by LOCC. Thus, the above also holds for any such χAB.

Generally, it can be concluded that any PPT bound en-
tangled state with positive entanglement cost always has
an NPT state that is not convertible into each other.

Non-uniqueness of entanglement measure in mixed
states immediately follows from the fact that the set of
mixed states is a partially ordered one under LOCC in
the asymptotic limit. Since there is no operational way to
link an inconvertible pair of states, there seems to be no
way of assigning “meaningful” amounts of entanglement
to them that could determine which state is more entan-
gled. In other words, we have therefore proven a sort
of “relativity” of entanglement measure under asymp-
totic convertibility with LOCC, which means that there
exists no absolute entanglement measure at least under
LOCC. An important future direction is finding out ex-
actly how the thermodynamical structure breaks down
when mixedness appears in entanglement.
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