Acceleration of quantum algorithms using three-qubit gates
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Abstract. We consider a method to overcome decoherence through constructing quantum circuits using
larger building blocks. Qur strategy is to numerically find the control-parameter sequences which produce
the desired gates. We demonstrate how to implement the famous three-qubit Toffoli, Fredkin, QFT and
the phase-shift gates on the Josephson charge-qubit model. We also discuss the robustness of the gates
obtained. Furthermore, we compare the length of the control-parameter sequences and find that the ability
to directly implement three-qubit gates — instead of the elementary gate decomposition — considerably

reduces the execution times of quantum algorithms.

Keywords: decoherence, Josephson charge qubit, multiqubit quantum gates, numerical optimization

1 Introduction

The standard approach to implementing a quantum al-
gorithm is to build the unitary operations using the set
of elementary gates [1] which are typically chosen to be
the one-qubit unitary rotations and the CNOT gate. The
resulting decomposition into elementary gates, the quan-
tum circuit, mimics the operation principle of a classical
digital computer. The elementary gate decomposition of
a given quantum algorithm may require a large number
of gates. However, the gate sequence can be shortened
considerably by introducing more complicated two-, and
three-qubit gates in addition to the elementary gates [2].
Thus, for a given decoherence time, the ability of imple-
menting arbitrary three-qubit gates will enable the exe-
cution of much larger algorithms.

2 Josephson charge-qubit model

The Josephson charge qubit utilizes the number degree
of freedom of Cooper pairs in a nanoscale Josephson-
junction circuit. The states of the qubit correspond to
either zero or one extra Cooper pair residing on the su-
perconducting island. The charging energy of the qubit
can be tuned with the help of an external gate voltage,
whereas tunneling between the states is controlled with
the help of an external magnetic flux. The Hamiltonian
for the qubit register is [3]

N 1 1 N,N
H= Z{_EB;JQ—§B;U;}—Z Ci;B:Bioi@ai, (1)
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where the standard notation for Pauli matrices has been
utilized. Here B and B are tunable parameters, which
depend on the gate voltages and the enclosed magnetic
fluxes.
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3 Numerical methods for finding multi-
qubit gates

The temporal evolution of the quantum state of a
Josephson-qubit register induces the unitary matrix

U, = Texp (—i / \ H(y(t))dt) , @)

where 7 stands for the time-ordering operator. The in-
tegration is performed along the path ~(t) in parameter
space which describes the time evolution of the control
parameters {BJ(t)} and {B!(t)}.

We will here consider a special class of paths ~(t),
which form polygons in the parameter space. Accord-
ingly the fields, described by the parameters, vary in time
at a piecewise constant speed.

We transform the problem of finding the desired uni-
tary operator into an optimization task. Namely, any U
can be found as zero of the error functional

f() =T = U,llF, (3)

which is found by minimizing over all possible polygonal
paths (t). Above, the subscript F refers to the Frobe-
nius trace norm for matrices.

Note that the polygon v has to have enough vertices to
parameterize the unitary group SU(2"). The minimiza-
tion landscape is rough, see Fig. 1, and thus we apply the
robust polytope algorithm for the minimization.

4 Results

We have applied the minimization procedure to the
various two- and three-qubit gates and found that the er-
ror functional of Eq. (3) can be minimized in a reasonable
time by using a parallel computer. We consider as an ex-
ample the implementation of the controlled? phase-shift
gate as well as the familiar Toffoli, Fredkin, and three-
qubit QFT gates. The results are qualitatively similar
for all gates. Figure 2 shows the found control param-
eter sequence v(t) which yields the desired gate at high
accuracy.
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Figure 1: Error functional landscape (a planar cut) for
controlled? phase-shift gate. The optimal minimum 3 -
10~* is situated in the center of the plane.

We found that the error functional grows linearly in
the vicinity of the minimum, which implies that the pa-
rameter sequence found here may be robust.
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Figure 2: Control-parameter sequences for the
controlled® phase-shift gate. Solid lines represent
the field B¢ while the dotted lines denote the field B,
respectively.

In our scheme, the execution time of the quantum algo-
rithm depends on the number of vertices of the parameter
path. For the example cases, we compare the number of
edges that are required to carry out a single three-qubit
gate or using a sequence of elementary gates. We find
that the implementation is improved if the three-qubit
gate is utilized.

We conclude that more efficient implementations of
quantum algorithms may be achieved if multiqubit gates
are employed in general, instead of elementary quantum
gates such as single-qubit and CNOT gates, as the build-
ing blocks. The price we pay is that we must carry out

heavy computations on a classical computer but as a re-
sult we can definitely shorten the operation time and are
hence able to fight decoherence.
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