
Quantum error correcting code for specific position errors
and its application

Hiroyuki Shiraki1 ∗ Shogo Usami1 Tsuyoshi Sasaki Usuda2 3 Ichi Takumi1

1 Dept. of A.I. and Computer Science, Nagoya Institute of Technology
Gokiso-cho, Showa-ku, Nagoya 466-8555 Japan.

TEL: 052-735-5472 FAX: 052-735-5477
2 Faculty of Information Science and Technology, Aichi Prefectural University,

Kumabari, Nagakute-cho, Aichi, 480-1198 Japan.
3 CREST, JST

Abstract. In this paper, we consider the quantum error correction in the case of considering security
and propose quantum codes which are a different type from ordinary quantum error correcting codes.
Furthermore we show performance evaluation and an example of application of the codes.
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1 Introduction

We consider transmission and processing of quantum infor-
mation. Quantum information is easily influenced by noise
from environment while arbitrary states cannot be cloned [1].
Therefore based on classical coding theory, quantum error
correcting code [2, 3, 4] was devised as the ways of coping.

In classical coding theory, the purpose of the coding is to
reduce the error probability p close to 0 by error correction.
In the error model of classical coding theory, each bit of out-
put strings is either an error bit or a correct bit although an
error may occur in any position with error probability p. For
example, (3,1) classical code can correct an arbitrary single
bit error completely. As we mentioned above, the theory of
quantum error correcting code is also constructed as based on
an assumption of such an error pattern. The five-qubit code,
for example, can protect against an arbitrary single qubit er-
ror [5].

However, in almost case of sending quantum information
via noisy quantum channel, all qubits of output strings are
actually mixed state. It is necessary to measure quantum
states in order to introduce the concept of “error”. But mea-
surement breaks quantum states. Hence we do not consider
measurement. For this reason, it is difficult to consider the
situation that each qubit of output strings is either an error
qubit or a correct qubit. Therefore, in almost application of
quantum error correcting codes, fidelity between an original
qubit sequence and qubit sequence obtained by decoding is
useful to evaluate codes [6, 7].

Here we consider different channel model from the model
mentioned above. Our channel model consists of an unreli-
able channel and a reliable channel (Fig.1). The unreliable
channel is a public quantum channel in which quantum infor-
mation is easily influenced by a third party’s eavesdropping or
a heavy quantum information processing in which probability
that the processing is failed is high. On the other hand, the
reliable channel is a private quantum channel, a reliable quan-
tum memory, or a quantum file server. An example of such
a channel can be considered in a quantum security protocol
(see Section 4). We consider the quantum error correction for
such model in this paper and propose quantum codes which
are a different type from ordinary quantum error correcting
codes. Furthermore we show performance evaluation and an
example of application of the codes.
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Figure 1: The model of quantum channel.

2 Error correction to specific positions

In this section, we show quantum error correcting codes for
specific position error in order to apply the channel model
shown in Fig.1.

2.1 The quantum error correcting code for spe-
cific position errors by (3m, m) coding

We consider (3m,m) quantum code which is designed as
based on an assumption that a probability of arising errors
from the 1st-qubit to the mth-qubit is high (sending via chan-
nel 1) and probabilities of arising errors of the other qubits
are low (sending via channel 2). This code can correct errors
which occur from 1st-qubit to mth-qubit.

We encode a m-qubit state |ψ〉 =
P2m−1

i=0 ci|i〉 in 3m-qubit
state as

|ψ〉 −→ |Ψcode〉 =
1√
2m

2m−1X
j=0

cj |sj〉, (1)

|sj〉 =

2m−1X
k=0

(−1)wH(j·k)|k〉|k〉|j〉, (2)

where wH(i) denotes Hamming weight of i in binary notation.
And j · k means “AND” operation for each qubit when j and
k are represented as binary numbers of m-digits.

2.2 The quantum error correcting code for spe-
cific position errors by (2m+1,m) coding

In this subsection, we propose more efficient coding than
the coding introduced in Section 2.1. This code can correct
errors which occur from 1st-qubit to mth-qubit as well as the
(3m,m) quantum code.



We encode a m-qubit state |ψ〉 =
P2m−1

i=0 ci|i〉 in (2m+1)-
qubit state as

|ψ〉 −→ |Ψcode〉 =
1√
2

2m−1X
j=0

cj |sj〉, (3)

|sj〉 =

(
(|00 · · · 0〉 + |11 · · · 1〉)|j〉 (0 ≤ j ≤ 2m−1 − 1),

(|00 · · · 0〉 − |11 · · · 1〉)|j〉 (2m−1 ≤ j ≤ 2m − 1),
(4)

where j is represented as binary numbers of m-digits.
The simplest example of the (3m,m) and (2m+1,m) codes

is the (3,1) quantum code and we have shown that this code
can correct an error of 1st qubit [8]. Moreover by making
use of the stabilizer formalism it can be said that the (3m,m)
and (2m+1,m) codes can correct errors which occur from 1st-
qubit to mth-qubit .

3 Bound for the quantum error correct-
ing code for specific position errors

In this section, we will modify the quantum Hamming
bound for the codes described in Section 2, then we exam-
ine the performance limit of them by using the bound.

3.1 The quantum Hamming bound
Any quantum code encoding k qubits in n qubits in a non-

degenerate way must satisfy the following inequality known
as the quantum Hamming bound [9].

tX
j=0

„
n
j

«
3j2k ≤ 2n, (5)

where t represents the number of correctable errors.

3.2 The modified quantum Hamming bound
Here we modify the quantum Hamming bound for the codes

introduced in Sectoin 2. In this case, the locations where er-
rors may occur are specific locations in qubits. Therefore the
quantum Hamming bound suitable for such codes is defined
by the following inequality (6). Note that n′ represents the
locatons where errors may occur.

tX
j=0

„
n′

j

«
3j2k ≤ 2n. (6)

3.3 Degenerate codes breaking the inequality (6)
We evaluate the performance limit of the code described in

Equation (1) by using the inequality (6). In this case, n′=m,

t=m and
Pt

j=0

„
m
j

«
3j2m = (1+3)m·2m = 23m = 2n. Thus

this code saturates the modified quantum Hamming bound,
that is, it satisfies the inequality (6) with equality.

On the other hand, as far as the code described in Equation

(3) concerned, n′=m, t=m and
Pt

j=0

„
m
j

«
3j2m = 23m >

22m+1 = 2n (m ≥ 2). Therefore we can regard this code as a
degenerate code which breaks the inequality (6).

4 Application to secure transmission of
quantum information

Recently, a quantum cryptographic protocol with the au-
thentication was proposed by Azuma and Ban (Azuma-Ban
protocol [10])．In this section, we consider using the authen-
tication as error detection so that if quantum information is
destroyed by eavesdropping, error correction enables it to be
resended.

We consider to apply the (3m,m) quantum codes described
in Section 2 to the Azuma-Ban protocol. In this case, a
quantum channel between sender and receiver corresponds to
Channel 1 shown in Fig.1 and a reliable quantum memory at
the sender side corresponds to Channel 2 shown in Fig.1.

We show the schematic diagram of the protocol after ap-
plication in Fig.2.
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Figure 2: The schematic diagram of the protocol after
application.

5 Conclusions

In this paper, we have considered quantum error correct-
ing codes for specific position errors and their application.
Moreover, we have considered the quantum Hamming bound
suitable for such codes, and then we show degenerate codes
as examples of breaking the bound.

As a future subject, we will consider an example of an ap-
plication of the (2m+1,m) codes.
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