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Abstract. We investigate a class QNC0(ADD) that is QNC0 with gates for addition of two binary
numbers, where QNC0 is a class consisting of quantum operations computed by constant-depth quantum
circuits. We show that QNC0(ADD) = QAC0(PAR) = QAC0(MUL), where QAC0(PAR) and QAC0(MUL)
are QAC0 with gates for parity and multiplication respectively, and where QAC0 is QNC0 with Toffoli gates
of arbitrary fan-in. In the classical setting, similar relationships do not hold. These relationships suggest
that QNC0 � QNC0(ADD); that is, the use of gates for addition increases the computational power of
constant-depth quantum circuits. To prove QNC0 � QNC0(ADD), we characterize it by the one-wayness
of a permutation that is constructed explicitly. We conjecture that the permutation is one-way, which
implies QNC0 � QNC0(ADD).
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1 Introduction

There are many studies of classical circuits for el-
ementary arithmetic operations [8]. Regarding ad-
dition, parity, and multiplication, it can be shown
that AC0(ADD) � AC0(PAR) � AC0(MUL), where
AC0(ADD), AC0(PAR), and AC0(MUL) are AC0 with
gates for addition, parity, and multiplication respec-
tively, and where AC0 is a class consisting of func-
tions computed by constant-depth circuits with AND
and OR gates of arbitrary fan-in [2, 5, 8]. In partic-
ular, NC0(ADD) � AC0(PAR) � AC0(MUL), where
NC0(ADD) is AC0(ADD) excluding gates of arbitrary
fan-in. These relationships suggest that the use of gates
for addition does not increase the computational power
of constant-depth classical circuits so much.

There are some studies of quantum circuits for elemen-
tary arithmetic operations [1, 3, 6, 7]. However, we do
not know whether the relationships corresponding to the
above classical ones hold; that is, the use of gates for addi-
tion increases the computational power of constant-depth
quantum circuits. We investigate a class QNC0(ADD)
consisting of quantum operations computed by constant-
depth quantum circuits having gates for addition of
two binary numbers. We show that QNC0(ADD) =
QAC0(PAR) = QAC0(MUL), where QAC0(PAR) and
QAC0(MUL) are QAC0 with gates for parity and mul-
tiplication respectively, and where QAC0 is QNC0 with
Toffoli gates of arbitrary fan-in. The relationships we
show suggest that QNC0 � QNC0(ADD); that is, the use
of gates for addition increases the computational power
of constant-depth quantum circuts. To prove QNC0 �

QNC0(ADD), we provide an explicit construction of a
permutation that can be computed in QNC0, whose in-
verse is as hard to compute as addition. And, we show
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the equivalence between the one-wayness of the per-
mutation and QNC0 � QNC0(ADD). We conjecture
that the permutation is one-way, which implies QNC0

� QNC0(ADD).

2 Preliminaries

A quantum circuit consists of arbitrary single-qubit
unitary gates and CNOT gates. The size of the circuit is
defined as the total number of gates. The depth of the
circuit is defined as follows. Input qubits are considered
to have depth 0. For each gate G, the depth of G is equal
to 1 plus the maximal depth of a gate that G depends on.
The depth of the circuit is equal to the maximal depth
of a gate.

The following classes are dealt with in this paper.

• NC0 consists of functions computed by families of
classical circuits of AND, OR, and NOT gates with
constant-depth and size polynomial in n, where n
is the size of the input, and where the AND and
OR gates have just two inputs.

• AC0 is like NC0, where we allow AND and OR gates
of arbitrary fan-in.

• QNC0 consists of quantum operations computed by
families of quantum circuits of single-qubit unitary
gates and CNOT gates with constant-depth and
size polynomial in n, where n is the size of the
input.

• QAC0 is like QNC0, where we allow Toffoli gates of
arbitrary fan-in.

As usual, we do not allow fanout operation in QNC0

and QAC0, though we allow it in NC0 and AC0. Note
that theorems in the following does not depend on
whether we allow fanout operation in NC0 and AC0. For



a class C and a family of operations X, C(X) represents
a class C with gates for X.

In the following, tensor products of quantum states
are represented as

⊗n−1
k=0 |xk〉 or |x0〉 · · · |xn−1〉. ⊕ denotes

addition modulo 2, and
⊕n−1

k=0 xk denotes (
∑n−1

k=0 xk) mod
2. N denotes the set of natural numbers.

We define the quantum parity operation as follows.

Definition 1 An n-ary quantum parity operation parn

on n source qubits |sk〉 and target bit |t〉 performs

|t〉
n−1⊗

k=0

|sk〉 → |t ⊕
n−1⊕

k=0

sk〉
n−1⊗

k=0

|sk〉,

for computational basis states and the behavior for su-
perposition states is defined by linearity. We define the
family of quantum operations PAR as {parn}n∈N.

3 Addition, Parity, and Multiplication

Definition 2 A 2n+1-ary quantum addition operation
addn performs

n−1⊗

k=0

|ak〉
n−1⊗

k=0

|bk〉|0〉 →
n−1⊗

k=0

|ak〉
n⊗

k=0

|sk〉,

for computational basis states a = an−1 · · · a0 and b =
bn−1 · · · b0, where sn · · · s0 is the binary representation of
a + b. The behavior for superposition states is defined
by linearity. We define the family of quantum operations
ADD as {addn}n∈N.

Definition 3 A 4n-ary quantum multiplication opera-
tion muln performs

n−1⊗

k=0

|ak〉
n−1⊗

k=0

|bk〉
2n−1⊗

k=0

|0〉 →
n−1⊗

k=0

|ak〉
n−1⊗

k=0

|bk〉
2n−1⊗

k=0

|sk〉,

for computational basis states a = an−1 · · · a0 and b =
bn−1 · · · b0, where s2n−1 · · · s0 is the binary representation
of a × b. The behavior for superposition states is defined
by linearity. We define the family of quantum operations
MUL as {muln}n∈N.

We show the following relationships.

Theorem 4 QNC0(ADD)=QAC0(PAR)=QAC0(MUL).

In the classical setting, the theorem corresponding to
Theorem 4 does not hold, where we regard quantum op-
erations as the classical counterparts of them.

Theorem 5 NC0(ADD) � AC0(PAR) � AC0(MUL).

4 Separability and One-Way Permuta-
tions

We define a permutation and its one-wayness as fol-
lows. We regard a function as a quantum operation by
considering its reversible version.

Definition 6 Let fn be a function such that fn :
{0, 1}n → {0, 1}n. A family of functions {fn}n∈N is
called a permutation if fn is one-to-one and for some
strictly increasing function a : N → N,

⋃
n∈N

dom(fn) =⋃
n∈N

{0, 1}a(n), where dom(fn) is the domain of fn.

Definition 7 A permutation {fn}n∈N is called one-way
in QNC0 if {fn}n∈N is in QNC0 and {f−1

n }n∈N is not in
QNC0.

We define a strictly increasing function a(n) = 2n +
2 and a family of functions {fn}n∈N such that fn :
{0, 1}n → {0, 1}n as follows. This construction is based
on the construction of the one-way permutation in [4].

• f2n+2(x0, . . . , x2n+1) = (y0, . . . , y2n+1), where

· yi = xi for 0 ≤ i ≤ n,

· yn+1 = xn+1 ⊕ x1 ⊕ x0,

· yi = xi ⊕ xi−n ⊕ (xi−1 ⊕ xi−n−1)xi−n−1

for n + 2 ≤ i ≤ 2n,

· y2n+1 = x2n+1 ⊕ (x2n ⊕ xn)xn.

We show the following equivalence.

Theorem 8 The following statements are equivalent.

• {fn}n∈N is one-way in QNC0.

• QNC0 � QNC0(ADD).

Conjecture 9 {fn}n∈N is one-way in QNC0.
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