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Abstract. Calculating the entropy of a reduced density matrix, we can recognize the entanglement
generation in quantum chaotic bi-particle systems. According to the de Broglie-Bohm’s interpretation of
the quantum mechanics, in this paper, we reveal that quantum potential causes the suppression of chaos
and the effect can be reduced in the multi-dimensional systems. Further, we try to qualify and quantify the
entanglement induced by quantum chaos from the point of the dynamics of configuration volume elements.
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1 Introduction

In the theory of quantum computer and quantum in-
formation, a property inherent in quantum mechanics,
entanglement becomes a target to be researched. At the
dawn of the quantum mechanics, the entanglement re-
ceived attention from the point of a paradox compre-
hended in the quantum mechanics[1]. In the theory of
quantum open systems, the formation of entanglement
between the relevant system and the irrelevant environ-
ment has also been considered as the origin of quantum
decoherence.

It is shown that in the interacting bi-particles the en-
tanglement between them is produced by the quantum
chaos [2]. In the previous analysis, the entropy of a
reduced density matrix has been used as a measure of
entanglement. In order to reveal the mechanism of the
entanglement generation induced by quantum chaos, in
this paper, we describe the evolution of wave functions
as rigid trajectories in the configuration space according
to the de Broglie-Bohm’s interpretation of quantum me-
chanics [3].

2 Coupled Non-linear System

As the quantum system with redundant degrees of free-
dom which are not necessary to cause chaos [4][2], we
consider coupled two kicked rotors

H(q̂1, p̂1, q̂2, p̂2; t)
∑

i=1,2

Hki(q̂i, p̂i; t) + cppp̂1p̂2. (1)

Here

Hk(q̂, p̂; t) =
1
2
p̂2 + kcos(q̂)

∞∑

n=1

δ(t − nT). (2)

Fig. 1 shows the time evolution of the linear entropy,

S ≡ Tr1[(ρ̂red)2] ≡ Tr1[(Tr2(ρ̂))2], (3)

which is calculated for the reduced density matrix ob-
tained by coarse-graining the second degree of freedom.
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Figure 1: Variation of linear entropy S (� =
87π/4096 = 0.0667 · · · )

According to the de Broglie-Bohm’s picture, we depict
the evolution of a quantum state as a bundle of rigid
trajectories of the particles. First, we represent a wave
function for the coupled kicked rotor, Φ(q1, q2; t) as a
polar coordinate form,

Φ(q1, q2; t) = R(q1, q2; t)exp[
i
�
S(q1, q2; t)], (4)

where R and S are real-valued functions. Then, the
Schrödinger equation for the system (1) is described as

∂

∂t
R2 +

∂

∂q1
R2((

∂S

∂q1
) + cpp(

∂S

∂q2
))

+
∂

∂q2
R2((

∂S

∂q2
) + cpp(

∂S

∂q1
)) = 0, (5)

∂S

∂t
+

1
2
(
∂S

∂q1
)2 +

1
2
(
∂S

∂q2
)2 + cpp(

∂S

∂q1
)(

∂S

∂q2
)

+ V (q1, q2; t) + VQ(q1, q2; t) = 0, (6)



where V (q1, q2; t) is the original potential,

V (q1, q2; t) ≡
∑

i=1,2

kicos(qi) ×
∞∑

n=1

δ(t − nT), (7)

and VQ(q1, q2), what we called a quantum potential, is

VQ(q1, q2; t) ≡ − 1
2R

(
∑

i=1,2

∂2R

∂2qi
+ 2cpp

∂2R

∂q1∂q2
)�2. (8)

Next we introduce an ensemble of particles with the sta-
tistical distribution R(q1, q2; t)2. If we assume that each
particle moves with velocity

q̇1 = (
∂S

∂q1
) + cpp(

∂S

∂q2
), q̇2 = (

∂S

∂q2
) + cpp(

∂S

∂q1
), (9)

the distribution function R(q1, q2, ; t)2 is conserved along
the flow of the particles through Eq. 5. If we are given a
wave function at arbitrary time, we can obtain a trajec-
tory of a particle by integrating Eq. (9).

3 Entanglement and Mixing Property

According to the previous section, we describe the
quantum dynamics in the bi-particle system (1) (k1 =
2.0, k2 = 0.4, cpp = 0.2, and T = 1.0) as rigid trajecto-
ries in the configuration space.

First, we show the evolution of 20 particles from t = 1.0
to t = 2.0 (Fig. 2). The initial particles are settled along
the two lines. The kick at t = 1.0 accelerates the particles
in the region q1 ∈ [0, π] and decelerates ones which belong
in the region q1 ∈ [π, 2π]. This motion results in the
high and low regions of the density of the particles. In
the high density region, the quantum potential become
prominent and scatter out the particles to flatten the
density profile. The coupling in (1) induces the motion
along to the q2 axis. As a result, the lines along which
the probe particles are connected are going to be bent.
We note that from the point of the trajectory picture,
the localization of wave functions in the single kicked
rotor is reasonable. For the one-dimensional system, the
quantum potential forbids the particles to go across each
other and thus formation of the high-density region is
strongly suppressed.
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Figure 2: Quantum motion of probes initially set on a
line (q2 = 0 or π).

Next, we estimate the deformation of configuration vol-
ume element from t = 30.0 to t = 31.0. At t = 30.0,
we settle uniformly 1,000,000 probes on the configura-
tion space, [0, 2π] × [0, 2π] and plot the positions of the
probes at t = 31.0 in Fig. 3, which indicates that the cou-
pling utilizes the second dimension of the configuration
space and results in the hard deformation of the volume
elements. We note taht if the coupling is absent, the
configuration volume, ∆q1∆q2 remains a rectangle.
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Figure 3: Deformation of configuration volume elements
between the time interval [30, 31].

4 Conclusion

We estimate the quantum dynamics that generate
quantum entanglement in the bi-particle system from the
point of the Bohm’s trajectory picture. Comparing the
parameter dependence of the entanglement generation
(Fig. 1) with that of the deformation property of configu-
ration volume elements, we can conclude that the entan-
glement generation in the bi-particle system corresponds
to the mixing property of the two-dimensional configura-
tion volume. The mixing in the multi-dimensional con-
figuration space is induced by the stretched and folded
motion by the quantum chaos.
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