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Abstract

Quantum cloning is an interesting topic in quantum information, as they exemplify
the significant difference between classical and quantum mechanics and are hoped
to be a useful element in quantum information processing. Here we examine how
many clones can be generated when the system is fraught with the problem of
decoherence. We first find a method to construct an N — M cloning circuit, and
compare the cloning time and the decoherence time. It turns out that our circuit
is highly vulnerable to decoherence when it is implemented with ion traps. We also
have studied the application of quantum cloning to error-correction.
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I. INTRODUCTION

Despite the impossibility of making perfect
copies of an unknown quantum state (no-cloning
theorem), the theory of quantum mechanics allows
us to clone quantum states approximately. Since
the discovery of the universal quantum cloning ma-
chine (UQCM) by Buzek and Hillery [1], many
theoretical works have been carried out and some
experiments to copy photons have been also per-
formed [2]. We have investigated the effect of deco-
herence on the quantum cloning by considering a
general configuration of its network and estimated
the upper bound for the number of cloneable states
which can be generated in a decoherent environ-
ment. Most recently, we have studied the applica-
tion of quantum cloning to error-correction.

II. GENERIC QUANTUM CLONER AND
CIRCUIT COMPLEXITY

Buzek et al. also presented a way to construct
a quantum circuit for 1 — M as well as 1 — 2
UQCMs [3]. In both cases, the whole process is
divided into two stages, namely preparation and
cloning stages.

How can we construct more generic N — M
quantum cloning circuits? A natural generalisa-
tion of the circuit of 1 —» M UQCM would look
like Figure 1.

Since the task of the cloning stage, consisting of
a sequence of CNOT gates [3], is to permute the
amplitudes of 22M~N_dimensional Hilbert space,
all the amplitudes in the N — M cloning transfor-
mation [4] must be generated by the preparation
stage, although the number of distinct amplitudes
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FIG. 1: Quantum circuit for N —+ M UQCM. It turns
out that this cloning circuit does work properly for any
M when N =1, N = 2, and many other NV and M as
long as the condition (1) is fulfilled.

is only M — N + 1. This imposes a condition upon
N and M in order for an N — M UQCM to work,
and it turns out to be

{HIC EE

k=0

The LHS of Eq. (1) represents the number of bases
that appear in the transformation and the RHS is
the dimension of the Hilbert space where qubits in
the preparation stage lie. This condition cannot
necessarily be always satisfied, nevertheless, it is
satisfied if M is sufficiently large compared with
N.

The cloning stage can be built as follows. As
mentioned above, the cloning stage’s task is to per-
mute the bases to distribute amplitudes generated
by the preparation stage to proper destinations.
Thus, we can make use of C*NOT' gate, which
flips [ target bits depending on the values of k con-
trol bits. Any permutation can be carried out by



a sequence of such gates.

With the configuration described above, an
N — M UQCM circuit will have O(22M (M —
N)2(272N 4 M~7)) CNOTSs at most in total and
we will take this value as the circuit complexity
to estimate the effect of decoherence in a physical
implementation in the following.

III. ION TRAPS AND THE NUMBER OF
CLONEABLE QUBITS

With the number of CNOT gates estimated
above, we can compare the cloning time 7' with
the decoherence time 74e.. We take cooled trapped
ions (Ca*,Hg" and Ba') and spontaneous emis-
sion as an example of possible implementations and
decoherence.

Since the processing time for each CNOT is pro-
portional to the inverse of the Rabi frequency be-
tween the levels in consideration (|0) and |1)), we
may wish to increase the intensity of the driving
laser to minimise T'. However, a stronger laser field
would cause transitions to higher levels, which may
decay faster by spontaneous emissions. Thus, we
need to minimise the probability of spontaneous
emission from the level |1) and higher levels.

By minimising the probability of spontaneous
emission, i.e., the decoherence time, with respect
to the electric field intensity, we have estimated
the upper bounds for the number of clonal qubits.
As a result, we see that even for a small number
of outputs copied from one input, the decoherence
due to spontaneous emission plays a critical role.
Even with an optimistic assumption for the Lamb-
Dicke parameter, n = 1.0, 1 — 2 cloning with Ca™,
1 — 2 and 2 — 3 with Ba® would be possible [5].

IV. ERROR-CORRECTION WITH
CLONING CIRCUIT

We turn to our attempt to apply quantum
cloning to error-correction. Qur aim is to reduce
the redundancy when correcting errors that occur
during transmission through a noisy channel.

The key point in this (approximate) error-
correcting scheme is to acquire some information
on the incoming state by measuring two of the out-
put qubits from the cloning circuit. Probability
distributions for outcomes from two qubits tell us
the tendency concerning a, f and ¢, when the in-
coming state can be written as [1)) = a|0)+3e*?|1).

The protocol goes as follows. Alice measures two
of three qubits emerging from the cloning circuit
and sends this two-bit information to Bob clas-
sically. Bob compares Alice’s outcomes with his

own measurement outcomes. Since each outcome
implies which “quadrant” of the a — ¢ plane the
state lies in, Bob can infer which of bit and phase
flips, or both, happened to the state in the chan-
nel. If these outcomes disagree, Bob flips the bit
or the phase or both, according to the discrepancy.

In order to improve the final fidelity as much
as possible, we also attempt to reverse the quan-
tum measurement, approximately and determinis-
tically. Each reversal matrix corresponding to each
measurement outcome 4 turns out to be a unitary
matrix U;, which appears in the polar decomposi-
tion of E;, one of the Kraus operators for quantum

cloning, i.e., U; = E; EJEZ>

The average of fidelity between initial and final
states over the a— ¢ plane is 0.592, which is rather
low if we see it as an error-correcting protocol. An
even simpler method involving a direct measure-
ment and the reproduction of the state can give a
better average, 2/3. Nevertheless, this fidelity is,
interestingly, independent of the error probabilities
of the channel.

V. REMARKS

We have investigated a possible method to con-
struct an N — M UQCM circuit. With the cir-
cuit complexity we obtained for this circuit, it has
been shown that quantum cloning may be vul-
nerable to decoherence. We have further studied
quantum cloning as a potential “tool” in quan-
tum communication, introducing the reversal op-
eration. The overall efficiency of our protocol as an
error-correcting scheme is rather low. Even though
this result is somewhat negative, we hope that this
will give an implication on the manipulation of in-
formation, for example, the separation of classical
and quantum information.
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