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Abstract. We introduce a refinement of the standard continuous variable teleportation measurement
and displacement strategies. This refinement makes use of prior knowledge about the target state and
the partial information carried by the classical channel when entanglement is non-maximal. This gives an
improvement in the output quality of the protocol. The strategies we introduce could be used in current
continuous variable teleportation experiments.
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Quantum teleportation has become a cornerstone of
quantum information theory since its conception by Ben-
nett et al. in 1993 [1]. It is a useful quantum information
processing task both in itself, and as part of other tasks
such as quantum gate implementation [2, 3]. In partic-
ular, optical implementations of teleportation [4, 5, 6, 7]
may be useful in current linear optical quantum comput-
ing proposals [3].

Quantum teleportation is a process whereby the state
of a quantum system can be communicated between two
(possibly very distant) parties with prior shared entan-
glement, joint local quantum measurements, local uni-
tary transformations and classical communication. In
the standard scheme, the two parties are called Alice and
Bob, and are sender and receiver respectively. Victor (the
verifier) gives Alice a quantum system (the target) in a
state known only to him. Alice makes joint quantum
measurements on the target state and her part of the
entanglement resource shared with Bob. The results of
these measurements she shares with Bob via a classical
communication channel. This information tells Bob the
local unitary transformations he must perform on his part
of the entanglement resource to faithfully reproduce the
target at his location. Victor then compares the output
state at Bob’s location with the target state by calcu-
lating the overlap between the two. In its simplest form
this is just the inner product of the two states and is in
general known as the fidelity.

In ideal teleportation the resource is maximally entan-
gled. As a result the classical channel carries no informa-
tion about the target state. Also the alphabet of input
states is assumed to be an unbiased distribution over the
same dimensions as the entanglement. Examples of this
include: the standard discrete protocol where qubits are
both the target and entanglement resource [1]; and the
original continuous variable protocol where the target is
a flat, infinite dimensional distribution and the entan-
glement is idealised EPR states [8]. However, one may
consider situations in which the entanglement is non-
maximal and the alphabet of states is not evenly dis-
tributed. Additional information is now available prior
to teleportation, from the restricted alphabet, and dy-
namically from the partial target information now car-
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ried by the classical channel. How should one then tailor
the protocol so as to make best use of this additional
information?

The situation arises naturally in practical implementa-
tions of continuous variable teleportation [9, 10, 5]. The
entanglement resource most commonly used in continu-
ous variable teleportation is the two-mode squeezed vac-
uum. It is not perfectly entangled, since this would re-
quire infinite energy. On the other hand an even distri-
bution of target states is also unphysical. We are mo-
tivated to find ways in which to make maximum use of
the resource given this situation. We outline here a gen-
eral strategy and then describe a simple refinement of
the standard continuous variable teleportation protocol
which gives an improved output quality for a reduced al-
phabet of possible input states. It has the advantage that
it may be implemented with currently available technol-
ogy.

Consider the situation of teleporting coherent states.
The state amplitudes will have an upper bound, and the
probability of Victor preparing a state with a certain am-
plitude might be known. We consider three variations on
this theme:

Two-dimensional Gaussian. The classical limit used
in Ref. [5] and derived by Braunstein, Fuchs and
Kimble [11] assumes that Victor produces coher-
ent states with a symmetric two-dimensional Gaus-
sian probability distribution, where coherent states
of greater amplitude are less likely to occur than
those with amplitude close to zero. The standard
protocol assumes the width of this distribution is
infinite. Braunstein, Fuchs and Kimble considered
how the classical limit changed for finite width but
not how to optimise the protocol as a function of
this width. Choosing this smaller subset of states
should allow Alice and Bob to improve the fidelity
of their teleportation protocol.

Coherent states on a circle. Another possibility is
that Victor could produce coherent states of an am-
plitude known to Alice and Bob, but of an unknown
phase. If the amplitude of Victor’s prepared coher-
ent states is α, then these states will lie on a circle
in phase space of radius α, hence the term “coher-
ent states on a circle”. This knowledge reduces the
alphabet of possible output states substantially and



should lead to a corresponding improvement in the
fidelity.

Coherent states on a line. Conversely to coherent
states on a circle, Victor could produce target
states of known phase but unknown amplitude.
These states would lie along a line in phase space
and hence are termed “coherent states on a line”.
Again, the alphabet of states is reduced and the
fidelity is expected to increase with respect to the
standard protocol.

We now describe a general strategy for tailoring tele-
portation based upon maximising the fidelity over Bob’s
possible displacements in phase space. Another tech-
nique of fidelity optimisation has been discussed by
Ide et al. [12], which uses gain tuning to improve the fi-
delity output. Our scheme is similar, however we use the
one-shot fidelity of teleporting a coherent state to find
Bob’s optimum displacement. The technique described
here gives very simple relations describing the displace-
ment Bob must make to achieve the best possible fidelity
given the level of squeezing, Alice’s measurement results,
and the known properties of the target state.

This technique can be improved further if one tailors
both the measurements made by Alice and Bob’s displace-
ment. To illustrate our general strategy for improving
teleportation fidelity via knowledge of the quantum al-
phabet we consider the following situation: Alice and
Bob know that they are attempting to teleport coherent
states, and they are very sure of the phase of the states,
however the input amplitude is unknown. What is the
best strategy Alice and Bob can take given that they
know the phase of the input state and the level of squeez-
ing? The answer is to tailor Alice’s measurements and
Bob’s displacement to the known amount of squeezing.
Bob then merely displaces his component of the entan-
glement resource in the known direction by an amount
related to the information sent to him.

We also adapt our tailored displacement scheme to
the situation where the target state alphabet is a two-
dimensional distribution in phase space; agreeing with
and extending previous results by Braunstein, Fuchs and
Kimble [11]

Overall, one can still make use of the prior knowledge of
the target state alphabet and optimise the protocol over
the gain for nonzero levels of squeezing. The tailored
displacement teleportation technique is again useful in
improving continuous variable teleportation.

Overall, we introduce a refined measurement and dis-
placement strategy which makes good use of the proper-
ties of prior knowledge about the target state and non-
maximal entanglement. This refinement is tailored to
the given experimental situation and can give a great
improvement on the output quality of continuous vari-
able teleportation. The strategy described here is gen-
erally applicable to all teleportation schemes involving
physically limited resources. A major advantage of this
scheme is that it is able to be implemented with current
continuous variable teleportation technology since it only
requires linear gain on the measurement results.
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