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Abstract. We evaluate the exact number of gates for circuits of Shor’s factoring algorithm. We estimate
the running time for factoring a large composite such as 530 bit numbers by appropriately setting unit times.
For example, we show that on the condition that each Toffoli gate is operated with 70µsec, the running
time for factoring 530 bit number is 1 month even if the most efficient circuit is adopted. Consequently, we
find that if we adopt the long unit-time devices or qubit-saving circuits, factorization will not be completed
within feasible time and we point out that long unit time may become a new problem preventing a
realization of quantum computers.
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1 Introduction

The security of the RSA cryptosystems is based on
the difficulty of factoring a large composite integer. The
present world record of the factorized largest composite
is RSA-160, which is a 530-bit number. This number was
factorized within 1 months by using 109 PCs.

Shor proposed a quantum algorithm which factorize a
composite number in polynomial time [1]. Our goal is
to estimate the actual time for factoring by using Shor’s
algorithm. In order to attain it, we need to evaluate the
number of elementary gates, such as Toffoli or rotation
gates. Although the number of qubits and the order of
the number of gates have so far been studied, we need to
evaluate the exact number of gates for factoring circuits
in order to attain the above purpose. In this paper, we
evaluate the exact number of gates (not only its order) for
three previously proposed circuits of modular exponen-
tiation. The unit time is different from various devices.
Hence, by setting the unit time appropriately, we esti-
mate the running time. We show that if we adopt some
device with long unit time or if we adopt qubit-saving cir-
cuits, factoring a large composite may not be completed
within feasible time. Our results lead to the conclusion
that the long unit time may become a new problem for
realization of quantum computers.

2 Circuits for Modular Exponentiation

Let N be a n-bit composite number to be factored.
Shor’s factoring algorithm is composed of two parts:
a modular exponentiation and an inverse of quantum
Fourier transform. The aim of the modular exponen-
tiation is to construct a state

1√
2m

2m−1∑
x=0

|x〉|ax mod N〉 (1)

from the initial state 1/
√

2m
∑2m−1

x=0 |x〉|1〉, where a is a
randomly chosen integer less than N and m = 2n. The
aim of the inverse of quantum Fourier transform is to
obtain a period of the function: ax mod N from Eq.(1).
The former is difficult than the latter.

The modular exponentiation Mod-EXP (a) : |x〉|0〉 →
|x〉|ax mod N〉 is composed of m controlled modu-
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lar multiplications [2]. The modular multiplication:
Mod-MUL(d) : |y〉 → |dy mod N〉 is composed of two
modular product-sum operations and one SWAP opera-
tion. The modular product-sum operation: Mod-PS :
|y〉|t〉 → |y〉|t + dy mod N〉 is composed of n con-
trolled modular additions. The modular addition:
Mod-ADD(d) : |y〉 → |y+d mod N〉 is composed of some
additions: ADD(d) : |y〉 → |y + d〉.

We show how to construct Mod-ADD from ADD.
Two controlled qubits xi, yj are included in the
Mod-ADD operation since we use each one controlled
qubit in Mod-EXP and Mod-PS, respectively. We
describe how to construct C(xi, yj)-Mod-ADD(d) from
ADD. We have two strategy for constructing the above
operation. In ADD operation, we use three registers:
R1, R2 and R3. These consist of 1 qubit, n qubits, and 1
qubit, respectively. The ADD operator is applied to the
register connected R1 and R2. We only represent Type2.
Step1 C(xi, yj)-ADD(d)
Step2 ADD(2n −N)
Step3 NOT (R1), C(R1)-NOT (R3) and NOT (R1)
Step4 C(R3)-ADD(N)
Step5 C(xi, yj)-NOT (R1)
Step6 C(xi, yj)-ADD(2n − d)
Step7 C(R1)-NOT (R3)
Step8 C(xi, yj)-ADD(d)
Step9 NOT (R1)

The Type1 ADD is obtained by adding two controlled
qubits C(xi, yj)- and combining Step1 and Step2, which
become C(xi, yj)-ADD(d + 2n − N). The Type1 con-
sists of one C3-ADD, three C2-ADD, two C3-NOT and
four C2-NOT . The Type2 consists of three C2-ADD,
one C-ADD, one ADD, one C2-NOT , two C-NOT and
three NOT . Note that C(xi, yj)- is unnecessary for op-
erators in Steps 2, 3, 4, 7 and 9. Which type is effective
depends on how to construct ADD.

3 Construction of ADD circuits

Three constructions have been known for ADD. These
are classical ADD, ADD using generalized Toffoli, and
Quantum Addition. We describe how to construct these
ADDs and evaluate the exact number of gates.

3.1 Classical ADD (C-ADD)

The classical ADD [2] is based on classical addition
circuits. This circuit needs n − 1 clean ancilla qubits as



carries. The average number of gates for C-ADD is given
by (2n−3, 2n− 3

2 , 3
2n−2). The first element is the number

of Toffoli gates, and the second and the third elements
are the number of C-NOT and NOT gates, respectively.
The number of gates for operating one C2-Mod-ADD
is given by (6n − 9, 8n − 15

2 , 17
2 n − 19

2 , 7
2n − 3

2 , 3
2n + 1)

in the case of Type2. We omit the case of Type1 since
the Type2 is more efficient. Since Mod-EXP consists of
2nm C2-Mod-ADD and m C-SWAP , the total number
of gates for Mod-EXP is given by m(12n2− 18n, 16n2−
15n, 17n2 − 18n, 7n2 − n, 3n2 + 2n). Next, we decom-
pose C4-, C3-NOT into Toffoli gates. The following are
known about the decomposition of Ck-NOT into Tof-
foli gates [3]. If there are k−2 clean (or unclean) ancilla
qubits, Ck-NOT can be decomposed into 2k−3 (or 4k−8)
Toffoli gates. If we use C-ADD, we can apply the first
condition in decomposing almost every Ck-NOT since we
can use unused carry bit as clean ancilla qubits. Then,
Ck-NOT , where k = 3, 4 can be decomposed into 3 and
5 Toffoli gates, respectively. Hence, the number of gates
for constructing Mod-EXP are given by Eq. (2). The
number of qubits are given by m + 3n + 1.

Type2: m(125n2 − 153n, 7n2 − n, 3n2 + 2n) (2)

3.2 ADD using generalized Toffoli (GT-ADD)

First, we describe the circuit for adding 2i into
|bn−1 . . . b0〉. By the sequence: C(bi, . . . , bn−1)-NOT (bn),
C(bi, . . . , bn−2)-NOT (bn−1), . . . , C(bi)-NOT (bi+1), NOT (bi),
the above is realized. If we add a = an−1 . . . a0 into
|bn−1 . . . b0〉, we run the above sequence for i such that
ai = 1. This circuit needs no ancilla qubits [2]. The
average number of gates for GT-ADD are given by
(1/2, 1, 3/2, ..., n, n). The i-th element is the number of
Cn+1−i-NOT gates and the last one is the number of
NOT gates.

The total number of gates for Mod-EXP is given as
follows. #Ci-NOT = n(4n − 4i + 13), where 4 ≤ i ≤
n + 3, #C3-NOT = 4n2 + 4n, #C2-NOT = 3n2 + 9n
and #C-NOT = 2n. In this case, we omit the Type2
since Type1 is more effective.

The Ck-NOT gates, except for Cn+3-NOT , can be de-
composed into 4(k−2) Toffoli gates since we can use more
than k − 2 qubits as unclean ancilla qubits. By adding
one ancilla qubit, we can decompose Cn+3-NOT . Hence,
the total number of Toffoli gates is given by Eq. (3). The
number of qubits are given by m + 2n + 3.
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)

. (3)

3.3 Quantum ADD (Q-ADD)

By applying quantum ADD (q-ADD(a)) [4] to the in-
put state |φ(y)〉, we obtain |φ(y + a)〉, where φ(y) is the
quantum Fourier Transform (QFT ) of y. Hence, ADD
can be realized as follows. First, we apply QFT to |y〉
to obtain |φ(y)〉. Second, we apply q-ADD(a) to obtain
|φ(y + a)〉. Finally, we apply QFT−1 to obtain |y + a〉.
This circuit also needs no ancilla qubits.

Next, we evaluate the number of gates. In this case,
we omit the Type1 since the Type2 is more effective. Let

a rotation gate:Rk = (1, 0; 0, exp(2πi/2k)). QFT is com-
posed of n+1 Hadamard gate: H and n+2−i controlled
rotation gates: C-Ri, where 2 ≤ i ≤ n + 1. The q-ADD
operation is composed of (n + 2− i)/2 times Ri gates on
average. Hence, the total number of gates for Mod-EXP
are given as follows. #C2-Ri = 3mn(n + 2− i), (1 ≤ i ≤
n + 1), #C-Ri = mn(n + 2− i), (1 ≤ i ≤ n + 1), #Ri =
m(9n + 2)(n + 2− i), (2 ≤ i ≤ n + 1), #R1 = mn(n + 1),
#H = m(8n+2)(n+1), #C2-NOT, #C-NOT, #NOT =
mn, m(6n + 4),m(4n + 4), respectively. The C2-Ri (or
C-Ri)gate can be decomposed into six (two) C-NOT
and eight (four) single qubit operation [3]. After the
decomposion, the number of C-NOT gates becomes
m(10n(n + 1)(n + 2) + 6n + 4) and the number of single
qubit operators becomes m(n+1)(n+2)(37n+2)/2. It is
known that if i is large enough, Ri can be approximated
as identity [4]. Then, the total number of gates can be
reduced to O(mn2 log n). The number of qubits are given
by m + 2n + 2.

4 Evaluation of the running time

Table1 shows the number of gates for factoring 530 and
1024 bit numbers. We set m = 1 and m = 2n in the eval-
uation of the number of qubits and gates, respectively.
Next, we estimate the running time for 530 bit numbers
by setting the four various unit time, which is a time
for operating elementary gate (Toffoli, Ri gate). Table 2
shows the running time for factoring 530 bit number.

Table 1: # of qubits and gates for 530 and 1024 bits
World Record Recommended

(n = 530) (n = 1024)
qubits # of gates qubits # of gates

C-ADD 1592 3.71× 1010 3074 3.80× 1011

GT-ADD 1064 2.25× 1014 2052 6.03× 1015

Q-
1063

6.10× 1012

2051
8.48× 1013

ADD 1.57× 1011 1.22× 1012

(In Q-ADD, the below shows with approximation.)

Table 2: Running Time for 530bit composite

unit time 1msec 0.1msec 1µsec 1nsec
C-ADD 1.18Y 43D 10H 37S

GT-ADD 7134Y 710Y 7.1Y 2.6D
Q-ADD 190Y/5.0Y 19Y/181D 70D/1.8D 1.7H/2.6M

(Y: years, D: days, H: hours, M: minutes, S: seconds)

The 530 bit number was factorized within 1 month
even if classical computers were used. Consider the con-
dition for quantum computers to exceed classical com-
puters. If we adopt C-ADD, the Toffoli gate should be
operated within 70µsec. If we adopt Q-ADD, the el-
ementary gates should be operated within 16µsec. In
order to exceed classical computers, either a quantum
computer with 1592-qubits and 70µsec unit time or with
1064-qubits and 16µsec unit time must be realized.
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