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Abstract. In this paper we present a generalized description of the Grover operator, employed in a
quantum database search algorithm. Our purpose is to employ an operator to find the proper solution(s)
originated from an arbitrary initial state in the two dimensional vector space, where the orthogonal basis
vector system are rotated in such a way where the result is obtained with a probability of error is very
close to zero. Furthermore, we also stress to get the result –if it is possible– by a single try.

Keywords: Grover’s Algorithm, Quantum computing, Quantum Signal Processing

1 Introduction

L. K. Grover published his fast database searching al-
gorithm first in [1] using the diffusion matrix approach
to illustrate the effect of the Grover operator, that took
O(

√
N ) iterations to carry out the search, which is the

optimal solution, as it was proved in [2]. Boyer, Bras-
sard, Hoyer and Tapp [3] enhanced the original algorithm
for more than one marked entry in several number of
identical solutions in the database and introduced upper
bounds for the required number of evaluations.

After a short debate Bennett, Bernstein, Brassard and
Vazirani gave the first proof of the optimality of Grover’s
algorithm in [4]. The proof was refined by Zalka in [5].

Within this paper we combined and enhanced the re-
sults for generalized Grover search algorithm in terms of
arbitrary initial distribution, arbitrary unitary transfor-
mation, arbitrary phase rotations and arbitrary number
of marked items to build a method to construct an un-
structured data base search algorithm which can be in-
cluded inside a quantum computing system. Because its
constructive nature this algorithm is capable to get any
amplitude distribution at its input, provides sure success
in case of measurement and allows to connect its output
to another algorithm if no measurement is performed.
Of course, this approach assumes that the initial distri-
bution is given and it determines all the other parameters
according to the construction rules.

A rather useful extension of the Grover algorithm when
we decided to find minimum/maximum point of a cost
function. Dürr and Hoyer suggested the first statistical
method and bound to solve the problem. Later based on
this result Ahuya and Kapoor improved the bounds. A
further beneficial exertion possibilities of the Grover algo-
rithm can be employed in Telecommunication field. The
present authors introduced the Grover database search
based multiuser detection in WCDMA environment in
[6], and [7].

The rest of the paper is organized as follows. In Sec-
tion 2. we introduce the generalized Grover operator (Q)
where the optimal number of iteration is determined in
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Section 3. The paper is closed with a final conclusion in
Section 4.

2 Generalized Grover Algorithm

Consider a large unsorted database, which contains N
entries, to find the desired value with any classical algo-
rithms would need at least O(N ) steps.

According to the utilization of Grover’s database
search algorithm in practice, larger quantum systems
should be taken into account where the input index regis-
ter of the algorithm is given as an arbitrary output state
of a former circuit and the output of the algorithm can
feed another circuit without any measurement. Hence
the exact knowledge of the index register after the final
iteration is of great significance.

2.1 Generalization of the Original Grover’s

Database Search Algorithm

In [1] the Grover operator was originally defined.
Henceforth let us apply some new necessary definitions
and practical considerations.

1. From now onward H should be replaced by an ar-
bitrary unitary transformation U (H → U).

2. The original Gorver-operator (O) is altered to

O → Iβ , I +
(

eφ − 1
)

∑

x∈S

|y〉〈y|. (1)

3. Analogue to the Oracle above, the controlled phase
gate (P) is changed to

P → Iη , I +
(

eθ − 1
)

|η〉〈η|. (2)

4. Furthermore the initial state of index register is
considered as

|γ〉 ,

2n−1
∑

x=0

γx|x〉, (3)

where
∑(2n−1)

x=0 |γx|2 = 1 as appropriate.



5. Finally the two basis vectors |α〉 and |β〉 consisting
of the indexes leading to unmarked solutions and
of the indexes ending in a marked entry should be
redefined, that were shown e.g. in [6].

|α〉 =
1

√

∑

x∈S |γx|2
∑

x∈S

γx|x〉, (4)

|β〉 =
1

√

∑

x∈S |γx|2
∑

x∈S

γx|x〉. (5)

Regarding the definitions in (1) and (2) the generalized
Grover operation (G → Q) looks like as follows

Q = −
(

I +
(

eθ − 1
)

|µ〉〈µ|
)

Iβ , (6)

where
|µ〉 , U|η〉 (7)

and relation U† = U−1 is exploited in consequence of the
unitary operation property, respectively.

Before continuing our examinations, let us prove the
completeness of the search.

Lemma 2.1 If the state vectors |α〉 and |β〉 are defined
according to (4) and (5), as well as the unitary operator
U and an arbitrary state |η〉 are taken in such a way
that U|η〉 lies within the vector space spanned by the state
vectors |α〉 and |β〉, then the generalized Grover operator
(Q) preserves this 2-dimensional vector space.
For any |v〉 ∈ V , Q|v〉 ∈ V is true.

3 Required Number of Iterations in

the Generalized Grover’s Search Algo-

rithm

After being acquainted with the two dimensional gen-
eralized Grover operator Q, the optimal number of iter-
ations lopt during a search should be derived. Since Q is
an unitary operator and therefore it is a normal operator,
hence it has a spectral decomposition

Q = q1|ψ1〉 + q2|ψ2〉, (8)

where q1,2 = −e( θ+φ
2

±∆) denote the eigenvalues of Q
and |ψ1,2〉 stand for the eigenvectors of Q, respectively.

Due to the spectral decomposition and the relation
〈ψ1|ψ2〉 = 〈ψ2|ψ1〉 = 0,

Ql = ql
1|ψ1〉〈ψ1| + ql

2|ψ2〉〈ψ2|, (9)

where l can be derived by

〈α|Ql|γ〉 = 0, (10)

which is fulfilled if both –the real and the imaginary–
part of (10) are equal to zero. The imaginary one is equal
to

=
{

〈α|Ql|γ〉
}

= cos

(

Λγ − Λ +
φ

2

)

sin (2z) sin (Ωγ) +

+ cos (Ωγ) cos (2z) = 0, (11)

since sin (l∆) 6= 0.

3.1 Optimal Number of Iterations

Now, the way is open to determine l from (11) which
provides a measurement with Pε = 0. Considering the
matching condition just as after some calculi

l∆ = ±π
2
± iπ − arcsin

(

sin

(

φ

2
− Λ + Λγ

)

sin (Ωγ)

)

.

(12)
Unlike the basic algorithm where i > 0 could result in
a more accurate measurement in case of the generalized
algorithm i = 0 provides Pε = 0.

The number of iteration lMC can be expressed from
(12) as

lMC =

π
2 −

∣

∣

∣
arcsin

(

sin
(

φ
2 − Λ + Λγ

)

sin (Ωγ)
)
∣

∣

∣

∆
, (13)

which leads to a measurement with a proper solution with
as high accuracy as possible. In addition we claim the
following restriction on the angle ∆

cos ∆ = cos

(

θ − φ

2

)

+ (14)

+ sin2 (Ω)

(

cos

(

θ + φ

2

)

− cos

(

θ − φ

2

))

.

4 Conclusions

In this paper we introduced a new generalized Grover op-
erator description applied in quantum database search algo-
rithm. We reviewed the basic Grover database search algo-
rithm and have shown a generalized Grover Operator where
the proper solution can be determined starting from an arbi-
trary initial state in the vector space V with. We also have
pointed out that under certain conditions it is possible to per-
form a quantum database search using only a single iteration
with possibility of success equal one after a measurement.
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