NMR experiments on in-place addition circuits
using quantum Fourier transformation
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Abstract. Full adder usually requires carry bits. However, the in-place addition based on the quantum Fourier
transformation (QFT) does not require any extra bit, which was proposed by A. Fijany in 1998 and reported by T.
G. Draper. It is very useful in the present situation where only a limited number of qubits are available. Moreover,
it is essential when no clear bit is available as in the case of initialization circuit of NMR quantum computer. In
this paper, we have experimentally demonstrated the QFT-based addition for the first time, using NMR quantum
computer. We have demonstrated the quantum parallelism by performing additions to superposition.
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Figure 1: The addition circuit using quantum Fourier transformation

1 Full adder without carry bits

The N-qubit addition based on classical addition algo-
rithm requires another (N — 1) carry qubits, which must
be initialized to |0). The usage of extra qubits is not
desirable in the present situation where we have only a
limited number of qubits. Moreover, it can not be used
in the initialization circuit where clear carry qubits are
not available in the first place [1] .

This problem can be solved by addition algorithm us-
ing quantum Fourier transformation (QFT) [2, 3] which
was proposed by Amir Fijany et al. in 1998 [4] and was
reported by Thomas G. Draper [5] . However, the algo-
rithm has not been tested experimentally. In this paper,
we demonstrate this algorithm for the first time using
nuclear magnetic resonance (NMR).

2 The addition circuit using QFT

In the classical Fourier transformation, the shifting
property, '

Flf (e +a)] = " FLf ()], (1)
is well-known. Accordingly, we can perform addition by
using QFT and phase rotation [4, 5] .

In the case of 3-qubit, the addition circuit can be com-

posed as shown in Fig. 1 where 2-qubit controlled gates
are defined in Fig. 2. We represent n-qubit QFT as
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Figure 2: The conditional rotation gate ( k =
1,2,3,--+ )
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(a) Structure

(b) The parameter about the qubits
Figure 3: 12, HyBrFs as 3-qubit molecule

When QFT is performed at the beginning of the circuit,
an augend a = a32? 4+ as2' + a;2° becomes ¢(a). The
k-th bit is given by,
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Denoting e(t) = ™ | it is possible to express the phase
factor as e(a/2%) = e(0.ay - - -a1). Therefore, |¢x(a)) con-
tains the lowest k& digits of the binary a in its phase.

Next, phase shifts controlled by an addend b = 322 +
bo2' + 5120 are performed at the center of the circuit.
¢s3(a) evolves by the subsequent applications of phase
shifts as
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Figure 4: The 3-qubit QFT-based addition circuit and the
disentangling circuit (dashed box) to examine the coherence
of the addition
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(b) After adding 001 to |001) 4 |011)

Figure 5: The spectra which were observed in each step to
add 001 to |001) + [011)
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|¢3(a + b)), (4)

and similarly, [¢a(a)) — |d2(a+b)), |¢1(a)) — |é1(a+
b)). As a whole |¢(a)) turns into |¢(a +b)).

Finally, inverse QFT (IQFT) is performed and ¢(a+5)
becomes a + b . In this way, addition is performd using
QFT and phase shifts without requiring carry qubits.

3 Experiments using NMR

We have used the molecule shown in Fig. 3 to exper-
imentally implement the quantum circuit in Fig. 1. We
have used three 'F nuclear spins as qubits by decoupling
protons. Since the initial state is thermal equilibrium
state in the NMR, quantum computer [6, 7] , initializa-
tion is performed by the simplified exhaustive averaging
[8] .

To demonstrate the parallel computation, we have per-
formed the sum with the augend input in the superpo-
sition state [001) 4 [011) (normalization factor omitted)
and the scalar addend 0105 = 215. We observe the NMR
spectra of the qubit 1. Fig. 5(a) shows the spectrum of
the input augend state. Fig. 5(b) shows the spectrum of
the output state in the position |010) and [100) , which
correspond to |1+ 1) and |34 1) respectively.

However, the spectrum of Fig. 5(b) alone can not dis-
tinguish superposition and mixture of |010) and |100). To
examine the output state further, we have applied disen-
tangling operation to the qubits 3 and 2. The whole
circuit diagram including addition part is shown in Fig.
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(c) The result of the experiment

Figure 6: The simulations and the result of the experiment
of the circuit in Fig. 4

4. The result of the simulation for the superposition is
shown in Fig. 6(a), and that for the mixture is in Fig.
6(b). The experimental spectrum has clearly appeared in
the position |010) as shown in Fig. 6(c) and suggests that
Fig. 5(b) is in the superposition. That is, the parallel
computation of 1 +1=2and 3+1 =4,

001) + [011) 22225 1010) + | 100), (5)

has been successfully performed.

We have also demonstrated the cascaded applications
of QFT-based addition and the addition to the entangled
augend, which have been omitted from this abstract.

4 Conclusion

By the NMR, experiments, we have demonstrated that
the QFT-based addition circuit operates properly for
quantum parallel computation.
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