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Abstract. We affirmatively settle the conjecture given by Kashefi, Nishimura and Vedral and complete a charac-
terization of average-case quantum one-way permutations in terms of reflection operator and pseudo identity. We
incorporate their basic idea with the universal hashing technique and modify the reduction between inverting quan-
tum one-way permutation and the other problem appeared in the characterization of worst-case quantum one-way
permutations given by them.
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1 Introduction

The class of one-way permutations is a restricted class of
one-way functions and the existence of one-way permutations
has been still open. Towards the settlement of the open prob-
lem, some characterizations have been introduced. In the clas-
sical case, Hemaspaandra and Rothe [4] gave a necessary and
sufficient condition for the existence of (worst-case) one-way
permutation. In the quantum case, Kashefi, Nishimura and
Vedral [5] gave a necessary and sufficient condition for the ex-
istence of (worst-case) quantum one-way permutation. They
also considered the average-case quantum one-way permuta-
tions and gave a partial result on characterizing the average-
case quantum one-way permutations and some conjecture on
the full characterization. Their characterization is based on the
efficient implementability of reflections about some class of
quantum states. In this paper, we affirmatively settle the con-
jecture and complete a characterization of average-case quan-
tum one-way permutations. We incorporate the basic idea in
[5] with the universal hashing technique [2, 6] and modify
the reduction between inverting quantum one-way permuta-
tion and the other problem appeared in the characterization.

2 Preliminaries

We say that a unitary operator (on n qubits) is easy if
there exists a quantum circuit implementing U with polyno-
mial size in n and a set F of unitary operators is easy if ev-
ery U ∈ F is easy. Throughout this paper, we assume that
f : {0, 1}∗ → {0, 1}∗ is a quantum one-way permutation. First,
we mention some useful operators in describing the previous
and our results. The tagging operators O[k] are defined as fol-
lows:

O[k]|x〉|y〉 =

−|x〉|y〉 if f (y)(k,k+1) = x(k,k+1)

|x〉|y〉 if f (y)(k,k+1) � x(k,k+1)
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where y(i, j) denotes the substring from the i-th bit to the j-th
bit of the bit string y. Note that the unitary operators O[k] are
easy. Next, we consider the reflection operators Q j as follows:

Q j =
∑

x∈{0,1}n
|x〉〈x| ⊗ (2|ψ j,x〉〈ψ j,x| − I),

where |ψ j,x〉 = 1√
2n−2 j

∑
y: f (y)(1,2 j)=x(1,2 j)

|y〉.

Let f : {0, 1}n → {0, 1}n be a permutation. Kashefi, Nishimura
and Vedral [5] showed that f is (worst-case) quantum one-way
if and only if the set Fn = {Q j( f )} j=0,1,..., n

2−1 of unitary opera-
tors is not easy. As a part of the proof of the characterization
of the worst-case one-way permutations, they give a quantum
algorithm (we call Algorithm INV in what follows) comput-
ing f −1 by using unitary operators O[k] and Q j. The initial
input state to INV is assumed to be 1√

2n
|x〉∑y∈{0,1}n |y〉, where

INV trys to compute f −1(x). Then INV performs the following
steps:

foreach j = 0 to n
2 − 1

(step j.1) Apply O[2 j + 1] to the 1st and the 2nd registers;
(step j.2) Apply Q j to the 1st and the 2nd registers.

After each step, we have the following:

(
the state
after step j.1

)
=

2 j

√
2n
|x〉

√

2n−2 j|ψ j,x〉 − 2
∑

y: f (y)(1,2 j+2)=x(1,2 j+2)

|y〉
 ;

(
the state
after step j.2

)
=

2 j+1

√
2n
|x〉

∑
y: f (y)(1,2 j+2)=x(1,2 j+2)

|y〉.

To characterize average-case quantum one-way permuta-
tions, the following notion is quite useful.

Definition 1 Let d(n) ≥ n be a polynomial in n and Jn be
a d(n)-qubit unitary operator. Jn is called (a(n), b(n))-pseudo
identity if there exists a set Xn ⊆ {0, 1}n such that |Xn|/2n ≤
b(n) and for any z ∈ {0, 1}n \ Xn

|1 − (〈z|1〈0|2)Jn(|z〉1|0〉2)| ≤ a(n),

where |z〉1 is the n-qubit basis state for each z and |0〉2 corre-
sponds to the ancillae of d(n) − n qubits.



Kashefi, Nishimura and Vedral [5] also gave a partial char-
acterization of average-case quantum one-way permutations
using the notion of pseudo identity and stated a conjecture
with respect to a complete characterization of average-case
quantum one-way permutations. In this paper, we affirma-
tively settle their conjecture and complete a characterization
of average-case quantum one-way permutations in terms of
reflection operator and pseudo identity.

3 Universal Hashing Operator

Before showing our results, we prepare a technical tool,
which may be useful by itself. In general, random permuta-
tions can be a useful tool to analysis of randomized algorithm.
In the case of quantum computation, the efficient and faithful
implementation of random permutations seems to be hard to
realize. Instead, we introduce the universal hashing technique
[2, 6] to quantum computing and settle the conjecture by using
the efficient implementability of the universal hash functions
and the similar property to random permutations.

Let r1, r2 ∈ GF(2n) and hr1,r2 be a function from GF(2n)
to GF(2n) such that hr1,r2(x) = r1x + r2. Let R = {hr1,r2 :
r1, r2 ∈ GF(2n) with r1 � 0}. Since it is easy to identify
GF(2n) with {0, 1}n by considering the standard conversion,
we regard R as the family of functions from {0, 1}n to {0, 1}n.
Note that any function in R is a permutation but it is generally
called a “hash” function because of the historical and conven-
tional reason. Then, R is strongly 2-univeral, namely, for any
x1 � x2 ∈ {0, 1}n and y1 � y2 ∈ {0, 1}n and h chosen uniformly
at random from R, Pr[h(x1) = y1 and h(x2) = y2] = 1/(2n)2.
We call it hashing operator and denote it by R. We note
that, instead of using the hashing operator R, we can choose
polynomially many pairs of (r1, r2) beforehand and consider
(r1, r2) being fixed during quantum computation. Namely,
we can consider that the whole computation is performed by
choosing a quantum circuit randomly and then feeding a given
input to the quantum circuit. For the simplicity, while we take
this manner, we still describe the hashing computation just
like the unitary operator. (Also note that the whole process
can be done by unitary operators.)

4 Characterization

Theorem 2 There exists a weakly quantum one-way permu-
tation if and only if there exists a polynomial-time computable
function f satisfying that there exists a polynomial p such that
for infinitely many n and any (1/2p(n), 1/p(n))-pseudo identity
operators Jp(n), the following family is not easy: Fn,p( f ) =
{(In ⊗ (R†Jp(n)R)†)(Q j( f )⊗ Irp(n)−n)(In ⊗ (R†Jp(n)R))} j=0,1,..., n

2−1.

Since the if-part can be proved by using a similar argument
to the one in [5], we omit the proof. Thus, we give a proof
sketch of the only-if-part. Suppose that for some fixed poly-
nomial, infinitely many n, and some (1/2p(n), 1/p(n))-pseudo
identity operators Jp(n), the family Fp,n of unitary operators
is easy. We construct a polynomial-size algorithm av-INV to
invert f by using unitary operations in Fp,n. Algorithm av-
INV is almost similar to Algorithm INV except the following
change: the operator Q j is now replaced with Q̃ j.

From the definition of pseudo identity operators, there ex-
ists a set Xn ⊆ {0, 1} with |Xn| ≤ 2n/p(n) such that for any

y ∈ Yn = {0, 1}n \ Xn, Jp(n)|y〉2|0〉3 = αy|y〉2|0〉3 + |ψy〉23, where
|ψy〉23⊥|y〉2|0〉3 and |1 − αy| ≤ 1

2p(n) .
In Algorithm av-INV, we apply Jp(n) before and after step

j.2 for each j. Note that the application of R before and after
Jp(n) does not affect the expected performance of Jp(n). The
application of Jp(n) makes an error in computation of f −1. We
call the vector Jp(n)|ψ〉 − |ψ〉 the error associated to |ψ〉. To
measure the effect of this error, we use the following lemmas.
Due to the space limitation, we omit proofs. (Lemma 4 was
stated in [5].)

Lemma 3 Assume that T ⊆ S ⊆ {0, 1}n. Then length l(S , T )
of the error associated to the state

|ψ(S , T )〉 = 1√|S |


∑

y∈S \T
|y〉|0〉 −

∑
y∈T
|y〉|0〉



satisfies that l(S , T ) ≤ 2
√|S ∩ Xn|/|S | + γ(n), where γ(n) is a

negligible function in n.

Lemma 4 Let Jp(n) |ψ(S , T )〉 = α|ψ(S , T )〉+ |ψ(S , T )⊥〉, where
|ψ(S , T )〉⊥|ψ(S , T )⊥〉. Then, ||ψ(S , T )⊥〉| ≤ l(S , T ).

For analysis of Algorithm av-INV, we use Lemma 3 and
Lemma 4. For each j, we let S j = {y : f (y)(1,2 j) = x(1,2 j)} and
S j = {y : f (y)(1,2 j+2) = x(1,2 j+2)}. Then, we have the following.

Lemma 5 For each j, E[l(S j, T j)] ≤ 2/
√

p(n), where the ex-
pectation is over the random selection of parameters of hash-
ing operators.

Using Lemma 5, we can show that the length of the accu-
mulated error is at most 2 · (n/2) · (2/

√
p(n)) after the ter-

mination of Algorithm av-INV. Thus, the length is bounded
by 1/q(n) for some polynomial q. Therefore, there exists a
polynomial-size quantum circuit A and infinitely many n such
that 1

2n

∑
x∈{0,1}n Pr[A(x) = f −1(x)] > 1 − 1/(q(n))2. This im-

plies that f is not weakly quantum one-way. �
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