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Abstract.We calculate the geometric phase of a spin-1/2 system driven by a one and two mode quantum
field subject to decoherence. Using the quantum jump approach, we show that the corrections to the phase
in the no-jump trajectory are different when considering an adiabatic and non-adiabatic evolution. We
discuss the implications of our results from both the fundamental as well as quantum computational
perspective.

In quantum mechanics physical states are equivalent
up to a global phase which in general does not contain
useful information about the described system, and thus,
can be ignored. However, Berry [1] surprisingly showed
that these phases can have a component of geometric
origin with important observable consequences. These
components which are gauge invariant and only depend
on the path followed by the system during its evolution,
have been investigated and tested in a variety of settings
and have been generalized in several directions [2]. Ge-
ometric phases are interesting both from a fundamental
point of view and for their applications, among which the
geometric quantum computation [3] is one of the most im-
portant. In fact, the use of geometric phases in the imple-
mentation of fault-tolerant quantum gates has motivated
their study under more realistic situations [4]. When a
system interacts with the environment, the quantum su-
perpositions decay into statistical mixtures [5] and this
effect, called decoherence, is the most important limiting
factor for quantum computation.

There are some works that investigate the behavior of
geometric phases under some typical errors sources like
random classical fluctuations to the driving fields, as well
as generic reservoirs acting in spin 1/2 evolutions [6, 7].
All of them consider the driving field as a classical sys-
tem. However, any driving field is also a quantized sys-
tem and, in most of the typical experimental situations,
this quantum behavior is relevant, especially when deco-
herence affects those fields. In fact, decoherence in the
driving field may become critical, particularly when geo-
metric phases are used to implement quantum protocols,
like communication and computational ones.

In this work, we will present the behavior of the ge-
ometric phase of a spin 1/2 particle interacting with a
driving magnetic field when this field is not only quan-
tized but also subjected to decoherence. We calculate
and analyze the effect of decoherence of the driving field
on both adiabatic and non-adiabatic evolutions of the
spin 1/2 particle. First we briefly describe the general
framework of geometric phases in open systems, devel-
oped in [7]. Then we calculate Berry’s phases for dif-
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ferent interactions of spin 1/2 systems and decohering
fields both in the adiabatic and non-adiabatic scenarios.
Finally we point out the differences between these two
situations and how this noise source compares to previ-
ously analyzed ones.

The approach we use to derive the geometric phase is
based on a quantum-jump method recently introduced in
ref. [7]. In particular we will confine ourself on the geo-
metric phase observable in the ”no-jump” trajectory [7].
Suppose that a system interacting with a reservoir, is
monitored by detectors. If the detectors do not detect
any decay, the geometric phase associated to system evo-
lution is given by [7]:

γ0 =
∫ T

0

〈ψ0(t)|H|ψ0(t)〉
〈ψ0(t)|ψ0(t)〉 dt− arg{〈ψ0(T )|ψ0(0)〉}, (1)

where i d
dt |ψ0(t)〉 = H̃|ψ0(t)〉, |ψ0(0)〉 = |ψ0〉, and H̃

is a non-Hermitian effective Hamiltonian given by H̃ =
H − i

2

∑n
k=1 Γ†kΓk. We will apply this general method

to the system considered in ref. [8]. In the above men-
tioned work a system composed of a two-mode quantized
field and a two-level atom jointly evolving under an adi-
abatic transformation has been considered. Particularly,
the observation of a geometric phase associated with the
initial vacuum state of the field is predicted, which gives
a value of Ω/4, Ω being the solid angle on a parameter
sphere.

We describe the two-level system with Bohr frequency
ω in terms of Pauli operators σz, σ± = (σx ± iσy)/2 and
the two field modes (both with frequency ν) in terms of
the creation and annihilation operators a, a† and b, b†.
In the above mentioned paper, the geometric phase is
obtained by an adiabatic evolution of the initial Hamil-
tonian H = νa†a+νb†b+λ(σ+a+σ−a†) by means of the
two-mode displacement operator U(φ, α) = e−iφJze−iαJy

where Jz = 1
2 (a†a − b†b) Jx = 1

2 (a†b + ab†), and Jy =
1
2i (a

†b − ab†). If consider in the initial state of the
evolution to be the eigenstate |φ〉 = cos θn/2|e, n, n′〉 +
sin θn/2|g, n + 1, n′〉, after a cyclic evolution of the pa-
pameters θ and α, this state acquires a geometric phase
equal to χ(n,n′) = 1

2Ω
[
n− n′ + 1

2 (1− cos θn)
]
, where

∆ = ω − ν is the detuning between the quantum mode
and the two-level system and λ is the coupling con-
stant. where n and n′ correspond to the number of pho-



tons in the a and b field modes respectively and where
Ω = 4π(1− cos α) is the solid angle described by the pa-
rameters α and φ. In the special case of θn = π/2 (the
maximally entangle state) and n = n′ = 0, the result:
χ0 = Ω/4 is obtained.

To consider now that the field is subject to decoher-
ence, we assume a master equation evolution for a decay-
ing field, which, in the no-jump case, amounts to consider
an effective Hamiltonian of the form H̃ = H − iλ

2 N̂ with
N̂ = a†a+b†b the total number of photons in the system.
The non-Hermitiam Hamiltonian is obtained from the as-
sumption that no jump occurs during the evolution, i.e.
the system is assumed to be continuously monitored by
detectors and no detection of photon is observed. In such
a scenario, it can been shown that the deviation of the
geometric phase from the value χ(n, n′) is vanishing up
to the first order in λ/R [9]. This reflects the resilience
of the geometric phase against the environment.

It is interesting to compare the geometric phase due
to an adiabatic evolution in presence of decoherence and
the analogous result obtained in a non-adiabatic fashion.
It is well known [10] that the adiabaticity is not a nec-
essary condition to observe geometric phases. In fact,
these are uniquely defined by the path on the projective
Hilbert space traversed by the quantum system in its evo-
lution. Thus, no matter how this evolution is achieved,
the geometric phase will remained unchanged. This may
no longer be the case in presence of decoherence, as the
interaction with the environment can affects differently
adiabatic and non-adiabatic evolutions.

Consider the following non-adiabatic setup: the sys-
tem is initially prepared in an entangled state of atom
and the field mode. Then it evolves under a time in-
dependent Hamiltonian involving only the degrees of
freedom of the field. By turning on a suitable Jaynes-
Cummings interaction we can prepare the system in the
state |ψin〉 = e−iJyα|φ〉 where |φ〉 = cos θn/2|e, n, n′〉 +
sin θn/2|g, n + 1, n′〉. After this preparation, we assume
that the dynamics of the system is described, in the
interaction picture, by the Hamiltonian Hint = δJz,
where δ is now the constant parameter. Thus, the state
evolves according to |ψ(t)〉 = e−iδJzt|ψin〉 and after a
time T = 4π/δ the state completes a closed loop. Us-
ing the definition of Aharanov and Anandan geometric
phase [10] it is easy to show that after a cyclic evolution
the phase acquired by the state is the same as χ(n, n′)
with Ω = 4π(cosα), i.e. the solid angle spanned on the
parameter sphere in the adiabatic case.

When the decoherence of the field is considered, the
phase for the no-jump trajectory can be calculated
from the expression (1) and it can be shown that the
decoherence-free case is recovered for low values of the
parameter λ. As expected the geometric phase is affected
by decoherence in different ways for the adiabatic and
non-adiabatic scenarios. In particular, for low decoher-
ence rates, i.e. λ << R and λ << β in the adiabatic and
non-adiabatic case, respectively, the lowest correction is
quadratic in the former and linear in the latter case. This
should be expected since in the adiabatic evolution the
probability for the state to be dragged away by the deco-
herence from the unperturbed evolution is washed away

(in the first order) by the driving Hamiltonian, thereby
opposing against decohering effects. On the other hand,
in the non-adiabatic evolution, there is no action other
than the decoherence, which finds no resistance in the
evolution.

Working towards having a realistic description of geo-
metric phases we have introduced field decoherence in the
problem of a two level system interaction with a quan-
tized field. It can be shown that in the geometric phase
generated by an adiabatic evolution the first correction
due to the decoherence of the driving field is only of sec-
ond order in the decaying rate of the field λ. This re-
sult reinforces the idea that geometric phases can be ro-
bust to decoherence effects, in agreement with previous
works analyzing the geometric phase under different noise
sources [6]. We also showed that, for the non-adiabatic
evolution this is no longer the case, and decoherence ef-
fects appear already in the first order correction term.
This result is also in accordance with previous works in
which, again, different noise sources were considered [11].

Our results are particularly relevant in the experimen-
tal realizations of these phases, like the one proposed
in [12], and in their use in the implementation of geo-
metric quantum computation. Understanding the effects
of decoherence in the geometric evolution of states is the
first step in finding schemes resilient to this.
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