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Abstract. We propose a scheme to implement the quantum teleportation protocol with single atoms
trapped in cavities. The scheme is based on the adiabatic passage and the polarization measurement. We
show that it is possible to teleport the internal state of an atom trapped in a cavity to an atom trapped
in another cavity with the success probability of 1/2 and the fidelity of 1. The scheme is resistant to a
number of considerable imperfections such as the violation of the Lamb-Dicke condition, weak atom-cavity
coupling, spontaneous emission, and detection inefficiency.
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In earlier proposals of quantum teleportation of sin-
gle atomic states [1], qubits were internal states of single
flying atoms. From the viewpoint of quantum informa-
tion processing, however, it would be ideal to have atoms
as stationary qubits used only for storage of information
and leave communication to photons. Recent advances in
cavity quantum electrodynamics techniques of trapping
and manipulating atoms [2] open ways for such a scheme.

In the present work, we propose a scheme to implement
quantum teleportation with single atoms each trapped in
a cavity. The schematic representation of our scheme is
shown in Figure. 1. The atom A is trapped in Alice’s
cavity, and the atom B in Bob’s cavity. Each atom is
driven adiabatically by a classical coherent field. The
level structures of atoms will be described later. Alice
maps the unknown internal state of her atom into the
two-mode state of her cavity through adiabatic passage,
while Bob generates a maximally entangled state of the
internal state of his atom and the two-mode state of his
cavity through adiabatic passage. During both the adi-
abatic passage processes, with the probability of 1, each
cavity should emit one photon with two possible polar-
ization degrees of freedom in which the quantum infor-
mation is encoded. Two photons leaking out from both
cavities interfere at the 50-50 beam splitter S. The beam
splitter S, two quarter wave plates W1 and W2, two po-
larization beam splitters P1 and P2, and four detectors
D1L, D1R, D2L, and D2R constitute a measurement de-
vice for discriminating between the Bell states of the two
single-photon polarization qubits.

The involved atomic levels and transitions are depicted
in Figure. 2. For the operation, both Alice and Bob ex-
ploit two F = 1 hyperfine levels, whereas Bob exploits
one additional hyperfine level. A qubit is encoded in two
Zeeman sublevels of the F = 1 ground hyperfine level.
To express the state of the atom-cavity system, we use
the notation: |Ψ(t)〉i = |x〉i |nL, nR〉i, where i = A,B de-
notes Alice or Bob, x the atomic state, and nL,R the num-
ber of left- or right-circularly polarized photons in Alice’s
or Bob’s cavity. Transitions between the F = 1 ground
and excited hyperfine levels, both the cavity modes, and
the classical field for Alice are all resonant with the same
frequency ω, whereas the transition |g′0〉B ↔ |e0〉B and
the classical field for Bob are resonant with another fre-

∗choooir@laputa.kaist.ac.kr
†hwlee@laputa.kaist.ac.kr

A

B

Alice Bob

S

P1

P2

D1L

D2L

D1R
D2R W1

W2

Figure 1: Experimental scheme to teleport the internal
state of atom A to atom B. S is a beamsplitter, W1 and
W2 are quarter wave plates, P1 and P2 are polarization
beam splitters, and D1L, D2L, D1R, and D2R are pho-
todetectors. Each winding arrow represents the classical
driving field

quency ω′. Ωi(t) and gi represent the time-dependent
Rabi frequency of the classical field (assumed to be real
without loss of generality) and the atom-cavity coupling
rate (assumed to be the same for both the transitions)
respectively, with i = A,B for Alice or Bob. For the
moment, we assume that gi remains constant during the
operation. The assumption is valid in the Lamb-Dicke
limit.

Initially, Alice’s system is prepared in the following
state:

|Ψ(0)〉A = (α |gL〉+ β |gR〉)A |0, 0〉A , (1)

where α and β are unknown. If the variation of ΩA(t) is
sufficiently slow, only the four transitions are involved as
depicted in Fig. 2(a): |gm〉A → |em〉A (m = L,R) driven
by the π-polarized classical field and |eL〉A → |g0〉A
(|eR〉A → |g0〉A) coupled to the left-circularly (right-
circularly) polarized mode of the cavity. The transition
between |g0〉A and |e0〉A is electric dipole forbidden. Con-
sequently, in the rotating frame, the Hamiltonian of the
total system can be written as

HA = ΩA(t)(|eL〉 〈gL|+ |eR〉 〈gR|)A
+gA(aAL |eL〉 〈g0|+ aAR |eR〉 〈g0|)A + h.c., (2)
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Figure 2: The involved atomic levels and transitions for
Alice (a) and Bob (b). Alice’s qubit is encoded in the two
Zeeman sublevels |gL〉A and |gR〉A, and Bob’s qubit in
the same way. Each straight arrow represents the transi-
tion driven by the π-polarized classical coherent field and
each winding arrow represents the transition due to the
atom-cavity coupling. Each transition of |eL〉A → |g0〉A
and |e0〉B → |gR〉B (|eR〉A → |g0〉A and |e0〉B → |gL〉B)
is coupled to the left-circularly (right-circularly) polar-
ized mode of the cavity. The transition |g0〉A ↔ |e0〉A is
electric dipole forbidden. w and w′ represent the relevant
transition frequencies.

where aAL,R denotes the annihilation operator for the
corresponding polarized mode of the cavity. The dark
space is spanned by the two eigenstates |D1(t)〉A =
cos θA(t) |gL〉A |0, 0〉A − sin θA(t) |g0〉A |1, 0〉A and
|D2(t)〉A = cos θA(t) |gR〉A |0, 0〉A−sin θA(t) |g0〉A |0, 1〉A,
where θA(t) is given by cos θA(t) = gA√

|gA|2+|ΩA|2
and

sin θA(t) = ΩA(t)√
|gA|2+|ΩA|2

. In the adiabatic limit, the

initial state (1) evolves in the dark space into the
following state:

|Ψ(t)〉A = α |D1(t)〉A + β |D2(t)〉A
= cos θA(t)(α |gL〉+ β |gR〉)A |0, 0〉A
− sin θA(t) |g0〉A (α |1, 0〉+ β |0, 1〉)A.(3)

Alice, thus, can map her atomic state (α |gL〉+ β |gR〉)A
into her cavity mode state (α |1, 0〉+ β |0, 1〉)A by simply
increasing sin θA(t) adiabatically.

For Bob, the atom is initially prepared in the state
|g′0〉B |0, 0〉B . The process for Bob is similar to that
for Alice. With ΩB varied adiabatically, only the
three transitions are involved as depicted in Fig. 2(b):
|g′0〉B → |e0〉B driven by the π-polarized classical field
and |e0〉B → |gL〉B (|e0〉B → |gR〉B) coupled to the right-
circularly (left-circularly) polarized mode of the cavity.
Consequently, in the rotating frame, the Hamiltonian of
the total system can be written as

HB = ΩB(t)(|e0〉 〈g′0|)B
+gB(aBR |e0〉 〈gL|+ aBL |e0〉 〈gR|)B + h.c., (4)

where aBL,R denotes the annihilation operator for the cor-
responding polarized mode of the cavity. In the adia-
batic limit, the initial state evolves into the following
dark state:

|Ψ(t)〉B = cos θB(t) |g′0〉B |0, 0〉B −

sin θB(t)
|gL〉B |0, 1〉B + |gR〉B |1, 0〉B√

2
,(5)

where θB(t) is given by cos θB(t) =
√

2gB√
2|gB |2+|ΩB |2

and

sin θB(t) = ΩB(t)√
2|gB |2+|ΩB |2

. Bob also increase sin θB(t)

adiabatically to generate a maximally entangled state
(|gL〉|0,1〉+|gR〉|1,0〉)B√

2
.

As sin θA(t) and sin θB(t) are increased, each cavity
emits one photon at some instant. To illustrate the ba-
sic idea of our scheme, let us first assume that both the
photons reach simultaneously at the beam splitter S. Ex-
pressing the polarizations of each photon as |L〉i and |R〉i
respectively, with i = A,B for Alice or Bob, the total
state can be written as

|Ψ′〉 =
1√
2
|g0〉A (α |L〉+ β |R〉)A(|R〉 |gL〉+ |L〉 |gR〉)B .

(6)
Now it is clear that a Bell measurement with two single-
photon polarization qubits followed by the correspond-
ing unitary operation to Bob’s atom completes the quan-
tum teleportation. As we consider only linear optical
elements, the success probability of such a Bell measure-
ment has been limited up to 1/2 [3]. Our scheme also
succeeds with that probability. In our setup of Fig. 1,
the Bell measurement succeeds only when the two pho-
tons are found to be oppositely polarized at two detec-
tors. From simple calculations, it is found that when D1L

and D1R click or D2L and D2R click, the state of Bob’s
atom collapses into the state α |gL〉B + β |gR〉B , whereas
when D1L and D2R click or D2L and D1R click, into the
state α |gL〉B − β |gR〉B . For the latter case, Bob applies
an appropriate local unitary operation to his atom to
transform the state into the former one.

In the actual situation, each photon leaks out from the
cavity in the form of a single-photon pulse due to the
random nature of the emission. In this case, Ωi(t) should
be adjusted to satisfy ΩB(t) =

√
2 gBgAΩA(t), where we

have assumed that two distances between the cavities
and the beam splitter are the same.

We also consider effects of various imperfections which
could arise in a realistic implementation, and show that
our scheme is resistant to them.
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